Conferenze e Notte dei Ricercatori: finale di settembre ricco di eventi!

Non ci sono solo le piazze degli Stand Up For Nuclear, in queste prime giornate autunnali.

Siamo lieti di annunciare altre tre importanti iniziative, che vedranno diversi nostri soci impegnati in attività di divulgazione particolarmente variegate ed interessanti.

Si comincia giovedì 28 settembre alle 20:45 con “La scienza risponde”, evento promosso dalla Biblioteca Comunale di Settimo Milanese (via Grandi 10), e nel quale i nostri soci Iyed Boussaa, fisico teorico, e Riccardo Chebac, ingegnere nucleare, risponderanno a tutte le domande e i dubbi sull’energia nucleare, raccolti durante l’estate. L’evento è  ingresso libero.

Si prosegue il 29 settembre con una conferenza a Cologno Monzese, promossa dalla nostra associazione in collaborazione con “Giovani Blu” e l’associazione Auser. Sarà relatore Andrea Elia Montini, studente di ingegneria energetica presso il Politecnico di Milano. L’appuntamento è alle 20:30 presso Villa Citterio (via Galileo Galilei 2). Per partecipare è necessario compilare questo form.

Concludiamo nel weekend con una iniziativa promossa dal Dipartimento di Energia (DENERG) del Politecnico di Torino, nell’ambito della Notte Europea delle Ricercatrici e dei Ricercatori, a cui hanno collaborato tanti nostri soci. Si tratta di una Escape Room a tema nucleare: sei nella sala di controllo di una centrale nucleare durante un incidente: fai attenzione ai segnali e alle informazioni che troverai per rimettere in sicurezza l’impianto.
Vi aspettiamo venerdì 29 settembre dalle 17:00 alle 24:00 e sabato 30 settembre dalle 10:30 alle 19:00 presso il Rettorato-Aula Bianca del Politecnico. L’evento è gratuito, ma per giocare è necessario registrarsi a questo link. Per tutti gli altri eventi della Notte Europea, potete consultare questa pagina.

Non è finita qui! Anche il mese di ottobre si annuncia particolarmente interessante: ci troverete a Bologna il 14 ottobre e a Roma il 17, con due eventi importantissimi, di cui vi daremo dettagli a breve. Stay tuned!

Trinitite: da Oppenheimer a noi

di Massimo Burbi

Chi ha visto il film “Oppenheimer” conosce la storia dell’esplosione della prima bomba atomica, avvenuta alle 5:29 del mattino del 16 Luglio 1945, in un luogo sperduto del deserto di Jornada del Muerto nel New Mexico, nome in codice “Trinity”. 

L’intenso calore dell’esplosione portò la temperatura dell’aria a diverse migliaia di gradi e fuse la sabbia del deserto che ricadde a terra allo stato liquido, come pioggia, per poi solidificare sotto forma di un materiale vetroso di colore verde olivastro mai visto prima di allora, che ricoprì un’area di 300-400 metri di raggio intorno al punto dell’esplosione [1].

A quel materiale venne dato il nome di Trinitite. 

Poco dopo l’esplosione si stima che il rateo di dose al centro del cratere si aggirasse sui 6-10 Sv/h [2][3], decine di milioni di volte il nostro fondo ambientale medio, abbastanza da prendersi una sindrome acuta da radiazioni in pochi minuti [4]. Per raccogliere campioni dal cratere venne allestito un carro armato rivestito di piombo, che doveva consentire di arrivare sul posto, raccogliere il materiale da un portello e rientrare. Il primo tentativo, circa quattro ore dopo l’esplosione, abortì a circa 100 metri dall’obiettivo perché i valori di radiazioni erano troppo elevati [5]. Un secondo tentativo, otto ore e mezzo dopo, ebbe più fortuna. Malgrado fossero dentro un carro armato rivestito di piombo, pilota e passeggero presero una dose di circa 50 mSv [6], che equivale all’odierna dose limite annua fissata per i lavoratori esposti a radiazioni. Loro la presero in 12 minuti [7]. Un pilota che fece il tragitto tre volte ricevette una dose di 150 mSv [8]. 

Una settimana dopo l’esplosione, il rateo di dose al centro del cratere era sceso di circa 15 volte, dopo un mese si era ridotto di circa 50 volte [9]. Oggi a Trinity il rateo di dose si aggira sui 5 μSv/h [10][11], più di 50 volte la media del pianeta (parlando di radiazione gamma) [12], ma non più di cinque volte quello che si può misurare nelle grotte di Orvieto [13] e paragonabile a quello che si prende su un volo di linea per via dei raggi cosmici [14]. Il sito di Trinity oggi viene aperto al pubblico due volte l’anno come attrazione turistica. E’ illegale per i visitatori prendere materiale da terra e portarselo a casa, ma alcuni campioni raccolti tra la fine degli anni ’40 e i primi anni ’50 sono ancora disponibili sul mercato.

Foto di un campione di Trinitite, è visibile il suo lato vetroso di tipico colore verde. Il peso del campione è 5.90 grammi
Altra foto dello stesso campione di Trinitite, è visibile il lato sabbioso, meno radioattivo di quello vetroso

Negli anni ho messo insieme una decina di campioni di Trinitite. Quasi tutti hanno un lato vetroso (quello che era rivolto verso l’alto) e uno sabbioso, con il primo più radioattivo del secondo. Tutti hanno un picco gamma molto pronunciato di Cesio 137, prodotto di fissione con un’emivita abbastanza lunga (30 anni) da essere arrivato forte e chiaro fino a noi e di Americio 241, prodotto direttamente dal Plutonio 239 inesploso della bomba per doppia cattura neutronica e successivo decadimento beta [15]. 

Spettro gamma del più interessante campione di Trinitite che mi sia capitato. Sono visibili, tra gli altri, i picchi del Cesio 137, dell’Americio 241, dell’Europio 152 e (probabilmente) del Bario 133

La sabbia del sito di Trinity era ricca di Europio e dei suoi isotopi stabili, l’Europio 151 e 153, che vennero attivati dal flusso di neutroni scatenato dall’esplosione, diventando Eu152 ed Eu154 [16], entrambi radioattivi. A oltre 75 anni di distanza l’Eu152 si è dimezzato più di cinque volte, riducendosi a circa il 2% della sua presenza originaria e nella maggior parte dei campioni è a malapena rilevabile, ma se si ha fortuna può capitare di mettere le mani su un pezzo come quello nelle prime due foto, in cui non solo i picchi di Europio sono addirittura eclatanti, ma si rileva perfino un picco attribuibile, almeno in parte, al Bario 133, originato dalla lente esplosiva della bomba, contenente Baratol, materiale che al suo interno aveva Bario 132, isotopo stabile anche lui attivato dal flusso di neutroni [17]. Misurare picchi del genere a distanza di 75 anni vuol dire che questo campione doveva trovarsi davvero vicino al punto dell’esplosione, ma c’è comunque voluta una misura di 28 giorni per tirarne fuori uno spettro “pulito”, perché la Trinitite, pur essendo nata nell’inferno di un’esplosione nucleare, oggi ha una bassa radioattività residua: il rateo di dose da radiazione gamma a contatto è molto inferiore al fondo ambientale.

Spettro gamma di un campione di Trinitite più ordinario del primo. Cesio 137 e Americio 241 sono ancora ben visibili, c’è un picco appena accennato di Europio 152 e niente più. Anche se il suo spettro è meno ricco, questo pezzo di Trinitite è più radioattivo del primo.

Sabato 30 settembre, insieme ad altri volenterosi, sarò allo “Stand Up for Nuclear” di Perugia, in Piazza Matteotti, per parlare di energia nucleare, rigorosamente in ambito civile perché le bombe è bene lasciarle nei libri di storia, ma in mezzo agli oggetti radioattivi di uso comune che avremo allo stand ci sarà spazio anche per un campione di Trinitite. 

Lo useremo come spunto per parlare del perché una centrale nucleare non può esplodere come una bomba e per mostrare che anche un oggetto che viene da quello che era uno dei luoghi più contaminati del pianeta, oggi può essere maneggiato senza veri rischi. 

Video, maneggiare un campione di Trinitite oggi

Il rifiuto radioattivo, diversamente da altri, diventa meno pericoloso con il passare del tempo, ma anche quando questa radioattività scende ben al di sotto dei livelli di guardia, basta una strumentazione alla portata di un privato per capire cosa c’è dentro e in che quantità. La radioattività, anche se è poca, non la puoi nascondere.

Lo stesso non si può dire di altri tipi di rifiuti, che restano tossici “per sempre” e per i quali non disponiamo di strumenti altrettanto precisi, sensibili e potenzialmente alla portata di molti. Questo dovrebbe portarci a chiederci di quali rifiuti dovremmo avere più paura.

Per chi sarà dalle parti di Perugia, ci vediamo lì.

P.S. per chi ha colto la citazione nel film: purtroppo nessuno suonerà i bonghi.

RIFERIMENTI BIBLIOGRAFICI

[1] https://www.lanl.gov/orgs/padwp/pdfs/11nwj2-05.pdf

[2][8][9] https://apps.dtic.mil/sti/citations/ADA331688     (Pagina 46)

[3][5][6][7] https://www.tandfonline.com/doi/full/10.1080/00295450.2021.1951538

[4] https://www.cdc.gov/nceh/radiation/emergencies/arsphysicianfactsheet.htm

[10] https://www.atomicarchive.com/history/trinity/radiation.html

[11] https://www.researchgate.net/figure/Commemorative-obelisk-and-plaque-at-GZ-of-the-Trinity-test-site_fig3_7657527

[12] http://www.fisicaweb.org/doc/radioattivita/geiger%20muller/taratura.pdf?fbclid=IwAR1gf3IU-pm4Da2w6a31ogjZ3aEzeaTFltHpKfI7qg973-Q_cmZj_OG3Y5w

[13] https://nucleareeragione.org/2022/06/15/le-grotte-di-orvieto-e-le-trincee-di-chernobyl/

[14] https://nucleareeragione.org/2021/05/01/raggi-cosmici-radiazioni-in-volo-tornando-da-fukushima/[15][16][17] https://www.semanticscholar.org/paper/Radioactivity-in-Trinitite-a-review-and-new-Pittauerov%C3%A1-Kolb/ea58aeec9c5e9de9b04f55ae42fe2bad5a870932

Nucleare e Ragione agli Stati Generali dell’Azione per il Clima

Dall’1 al 3 settembre si svolgerà ad Oira (Crevoladossola, Piemonte) il primo appuntamento degli Stati Generali dell’Azione per il Clima, un’iniziativa promossa dall’associazione “Ci sarà un bel clima” e alla quale parteciperanno più di 20 organizzazioni che si occupano di clima e ambiente.

Tra queste ci sarà anche il Comitato Nucleare e Ragione, che ha aderito con convinzione alla proposta ed intende offrire un contributo costruttivo, mantenendo un dialogo aperto con tutte le realtà presenti. Un profilo che ha sempre contraddistinto le azioni della nostra associazione.

A questo primo appuntamento la delegazione di Nucleare e Ragione sarà composta da Giuseppe Francesco Nallo e da Elena Agostoni, quest’ultima in rappresentanza anche del neonato capitolo italiano di WiN (Women in Nuclear).
Sono davvero tanti i soci che hanno colto con favore questa iniziativa e che collaboreranno nelle fasi successive. L’obiettivo finale, come si legge testo di presentazione, è la scrittura un documento condiviso che identifichi i punti fondamentali per attuare la transizione ecologica in Italia e funga da proposta politica nel dibattito pubblico sul tema.
Si tratta di un percorso che si protrarrà fino a tutto il 2024, con incontri formativi, tavoli di lavoro tematici e un’assemblea conclusiva.
Non mancheremo di tenere i nostri lettori aggiornati! Stay tuned!

Per maggiori informazioni:
https://unbelclima.it/stati-generali-dellazione-climatica/

https://www.corriere.it/pianeta2030/23_agosto_29/prima-riunione-gli-stati-generali-clima-cosi-si-salvera-terra-bc904eb4-4642-11ee-94cf-76f12b5af0d1.shtml

https://www.ilfattoquotidiano.it/2023/09/01/al-via-gli-stati-generali-dellazione-climatica-obiettivo-superare-la-frammentazione-dei-movimenti-e-portare-alla-politica-proposte-chiare/7276529/

Comunicato Stampa: Stand-up for Nuclear Italia alla V edizione

A partire dal 9 settembre e fino alla fine di ottobre centinaia di volontari si troveranno nelle piazze di ventuno città italiane per la V edizione dello Stand-up For Nuclear, una manifestazione internazionale nata per promuovere presso l’opinione pubblica i benefici delle tecnologie nucleari in tutti i suoi impieghi civili, in ambito energetico, medico-diagnostico, alimentare, industriale e nella ricerca scientifica.

Lo sfruttamento dell’energia nucleare è indispensabile per coniugare il progresso umano alla cura dell’ambiente, in particolare per contrastare la povertà energetica e, nel contempo, mitigare gli effetti delle emissioni inquinanti e climalteranti.

L’Unione Europea – a seguito di una rigorosa analisi e delle indicazioni fornite dagli scienziati del Joint Research Center (JRC) –  ha inserito nel 2022 il nucleare all’interno della cosiddetta Tassonomia della Finanza Sostenibile: si tratta di un importantissimo riconoscimento del ruolo di questa tecnologia quale strumento utile per la transizione energetica degli Stati Membri, come peraltro stabilito anche da numerosi altri organismi internazionali (IEA, UNECE, IAEA, IPCC).

Alla luce delle recenti difficoltà legate alle instabilità geopolitiche e alla conseguente ridotta sicurezza degli approvvigionamenti di materie prime, diversi Stati hanno rivalutato i piani di abbandono del nucleare, sia prolungando la vita delle centrali nucleari attive sia  accelerando nell’iter di costruzione di nuovi impianti. Tutto questo in piena sinergia con lo sviluppo e il sostegno alle fonti rinnovabili, al fine di rafforzare la sicurezza energetica, ridurre la dipendenza dai combustibili fossili e nel contempo accelerare il processo di transizione verso un sistema energetico pulito e sostenibile.

In Europa la maggiore attenzione al ruolo chiave del nucleare per la decarbonizzazione si è recentemente concretizzata in un accordo di collaborazione tra dodici Stati Membri, che hanno sollecitato la Commissione Europea a valorizzare questa tecnologia all’interno delle politiche comunitarie.

L’Italia paga tuttora i costi del prematuro abbandono del nucleare avvenuto nel 1987, sia in termini di ritorno d’investimento non goduto, che in termini di perdita di competenze occupazionali e competitività, e non ultimo in termini di mancata riduzione di emissioni.  Tuttavia, rispetto agli obiettivi di medio/lungo termine, finalizzati alla decarbonizzazione completa del settore energetico entro il 2050, il nostro Paese dispone ancora del tempo e delle risorse per riconsiderare il ricorso all’energia nucleare all’interno della propria strategia energetica. Ne sono una prova l’interesse recentemente dimostrato da importanti aziende del settore, la nascita di start-up e collaborazioni industriali, uniti al sempre più elevato numero di studenti che ogni anno si diplomano ai corsi di laurea di ingegneria nucleare e all’elevata qualità della ricerca condotta da atenei e istituzioni scientifiche nazionali.      

Cionondimeno, In Italia continua a pesare un giudizio negativo, dettato da un approccio spesso ideologico e poco attento alle evidenze scientifiche, e da un atteggiamento ostile di una parte della classe politica e dei media, spesso più inclini a cavalcare le paure della gente che a informare seriamente su questa tematica.

I sondaggi, tuttavia, dimostrano che l’opinione pubblica sta maturando negli ultimi anni una posizione più possibilista nei confronti di questa tecnologia, e là dove viene dato spazio alle argomentazioni dei tecnici, il dibattito assume un tono più equilibrato e meno influenzato dagli stereotipi. Non manca tuttavia chi insiste con una narrazione distorta e poco attenta alle evidenze numeriche. 

Affinché i cittadini possano costruirsi una opinione più consapevole, i volontari di “Stand Up for Nuclear” si mobilitano anche quest’anno nelle piazze di tutto il mondo. In Italia saranno allestiti banchetti informativi ad Acireale, Bologna, Brescia, Catania, Como, Genova, Lecce, Lodi, Milano, Napoli, Padova, Pavia, Perugia, Pisa, Roma, Torino, Trento, Treviso, Trieste, Verona, Vicenza, per sottolineare l’importanza dell’energia nucleare come fonte energetica affidabile e pulita e per dipanare dubbi e presentare pro e contro in un dialogo onesto e aperto con la cittadinanza.

Per maggiori informazioni:

– Web: standupfornuclear.orghttps://nucleareeragione.org/sufn/
– Instagram: Stand_up_for_nuclear, Nucleare e Ragione
– Facebook: Nuclear Pride Coalition, Nucleare e Ragione
– Twitter: Stand Up for Nuclear, Nucleare e Ragione

Coordinatore Nazionale:

Davide Loiacono, 3406509489, info@nucleareeragione.org

RADIOATTIVITÀ E APPLICAZIONI INDUSTRIALI

di Matteo Frosini

Aggiornamento 23/9/2025: abbiamo pubblicato sul nostro canale Instagram alcuni quiz sulle tematiche trattate da questo articolo. Trovate i quesiti e le relative risposte scorrendo fino in fondo alla pagina. Se siete interessati alle puntate precedenti dei nostri quiz, potete leggere gli articoli correlati quiquiquiquiquiqui e qui.


Perché la radioattività?

Fin dalla sua scoperta, all’inizio del secolo scorso, la radioattività ha destato grande interesse per le sue potenzialità. In questo articolo con il termine radioattività si considera quella proprietà di alcuni elementi instabili di emettere radiazioni ionizzanti: particelle alfa e beta, raggi gamma (per il momento trascuriamo la radiazione X e i neutroni).

Per maggiori informazioni sul concetto di radioattività, rimandiamo ai nostrie articoli/FAQ pubblicati a puntate nel 2014, e che trovate qui, qui e qui.

Un elemento radioattivo , detto anche radionuclide, è descritto, oltre che da un numero atomico ed un numero di massa, da uno specifico tempo di dimezzamento, ovvero il periodo di tempo trascorso il quale mediamente l’elemento dimezza la sua attività (numero di decadimenti al secondo, paragonabile alla sua “potenza”). Ciascun radionuclide esistente decade esponenzialmente seguendo un esatto schema, emettendo radiazioni che hanno energie ben definite, per cui nessun radionuclide è identico per tipologia di emissioni ad un altro. Queste emissioni possono essere utilizzate come “impronte digitali” per riconoscere lo specifico radionuclide.

Ciascun tipo di radiazione prodotta da questi elementi interagisce in maniera diversa con la materia: le particelle alfa ad esempio sono assorbite facilmente da qualsiasi materiale (un semplice foglio di carta è in grado di schermarle), le particelle beta hanno una maggiore penetrazione e vengono assorbite da materiali aventi bassa e media densità (plastica, vetro, metalli leggeri), la radiazione gamma (e anche X), come è noto ai più, ha un elevato potere penetrante e può essere schermata da materiali ad alta densità (metalli pesanti come piombo e tungsteno).

Potere penetrante delle diverse tipologie di radiazioni ionizzanti.

È proprio questa diversa capacità di penetrazione nei materiali che viene sfruttata in diverse attività industriali. Ma quali sono gli elementi radioattivi più diffusi per queste applicazioni?

I radionuclidi utilizzati in industria

In tabella sono riportati i principali elementi radioattivi diffusi in ambito industriale con indicato il tipo di decadimento, il tempo di dimezzamento (T1/2) e l’energia delle radiazioni emesse utili per le attività industriali. Ovviamente non si tratta di un elenco esaustivo.

RadionuclideDecadimentoT1/2Energia radiazioni
Cobalto-60Beta –5,3 anni1173 e 1332 keV (gamma)
Kripton-85Beta –10,7 anni251 keV (beta) 514 keV (gamma)
Stronzio-90Beta –28,9 anni196 keV (beta)
Cesio-137Beta –30,1 anni661 keV (gamma)
Iridio-192Beta – e CE74 giorni317 e 468 keV (gamma)
Americio-241Alfa433 anni60 keV (gamma)

In genere un apparato industriale che incorpora una sorgente radioattiva è costituito da un portasorgente schermante con un foro di uscita per collimare la radiazione emessa in una precisa direzione, un rivelatore di radiazioni posto di fronte al fascio e un materiale oggetto di analisi frapposto tra i due.

La scelta di un radionuclide rispetto ad un altro è dettata da diversi fattori, tra cui:

  • Il tipo di materiale da analizzare (densità, spessore);
  • La gestione per la sostituzione delle sorgenti e lo smaltimento dei rifiuti radioattivi.

Nel caso di materiale con densità o spessore elevato (metallo fuso, lamiere, manufatti di grandi dimensioni) si opterà per sorgenti che emettono radiazioni gamma (Cobalto-60 o Cesio-137), mentre per controlli su materiali come carta, plastica, alluminio, aria si prediligono sorgenti con sole emissioni beta (Kripton-85 e Stronzio-90) o gamma di bassa energia (Americio-241). I tempi di dimezzamento dei principali radionuclidi utilizzati sono dell’ordine degli anni, di modo da avere una vita utile per la sorgente paragonabile con la durata di esercizio dell’impianto: sorgenti costituite da radionuclidi con tempi di dimezzamento brevi comportano frequenti sostituzioni e quindi costi aggiuntivi per le operazioni di movimentazione, trasporto ed eventuale smaltimento delle stesse.

Misure di spessore e densità

Dalle industrie che producono carta, tessuti, pellicole plastiche a quelle che producono laminati metallici, le sorgenti radioattive trovano impiego come efficiente strumento per la rilevazione delle caratteristiche del materiale prodotto (prevalentemente spessore e densità).

In alcune cartiere ad esempio sono installati macchinari che incorporano sorgenti che emettono radiazioni beta (come Kripton-85 e Stronzio-90): la radiazione attraversa il materiale, una parte viene trasmessa al rivelatore ed una parte viene assorbita, il programma di analisi collegato al rivelatore, grazie ad un’opportuna calibrazione iniziale, restituisce in tempo reale il dato di interesse per monitorare la corretta produzione.

Misure di livello

Un’altra grandezza che viene monitorata avvalendosi di una o più sorgenti radioattive è il livello di riempimento di un contenitore, serbatoio, condotto,… In tal caso le sorgenti più utilizzate emettono radiazioni gamma (come il Cesio-137) ma possono essere impiegate anche sorgenti che emettono radiazioni beta come nel caso della misura del livello di riempimento delle lattine o dei brick.

Il principio di funzionamento è simile a quello visto per le misure di spessore o densità: in questo caso il materiale frapposto tra sorgente e rivelatore è, ad esempio, un serbatoio. Se la radiazione viene intercettata dal materiale contenuto al suo interno il segnale rilevato diminuisce indicando lo stato di riempimento.

Layout di apparato di misura del livello di un serbatoio con tre sorgenti radioattive.

Gammagrafia industriale

Come avviene in ambito medico con i raggi X, anche in industria le radiazioni sono utilizzate per eseguire delle radiografie: quando la radiazione impiegata è di tipo gamma si definiscono gammagrafie. Tipicamente gli oggetti da ispezionare hanno densità elevate (metalli) e spessori non trascurabili da cui la necessità di radiazioni altamente penetranti (Cobalto-60, Iridio-192).

L’oggetto da radiografare viene posto tra la sorgente e il rilevatore di immagini: questo tipo di ispezione permette di identificare eventuali cricche o perdite di integrità della struttura (come si fa con le nostre ossa in ospedale). Le sorgenti possono essere trasportate in appositi contenitori schermanti per attività di gammagrafia itinerante in diversi cantieri e stabilimenti: la sorgente viene estratta con un apposito sistema pneumatico quando l’operatore si trova a distanza di sicurezza. Visto l’elevato rischio di esposizione dovuto alla presenza di una sorgente radioattiva “nuda” in ambiente di lavoro, queste ispezioni vengono programmate di notte, durante le ore in cui il personale in impianto è minimo e si ha scarsa probabilità di esposizione della popolazione.

Predisposizione dell’area di lavoro per gammagrafia industriale e particolare di un contenitore portasorgente.

Sterilizzazione industriale

Le sorgenti radioattive sono utilizzate anche nei processi di sterilizzazione: dispositivi medici (siringhe, bisturi,…) o alimenti sono irraggiati con elevatissime dosi di radiazioni (beta, X o gamma) per eliminare completamente tutti gli organismi viventi presenti sulle superfici, nel caso dei dispositivi medici per eliminare il rischio di infezioni, nel caso degli alimenti per ritardare il processo di germinazione (patate) e aumentarne la conservazione (carni, frutta e verdura).

Le attività delle sorgenti radioattive in questo caso sono molto elevate e tipicamente, quando non in uso, sono stoccate sul fondo di apposite piscine riempite d’acqua, scavate nel terreno all’interno di bunker rinforzati. Lo spessore di acqua che le sovrasta (svariati metri) garantisce sul pelo dell’acqua una dose da radiazioni paragonabile al fondo ambientale, riducendo così il rischio di esposizione per i lavoratori. Un sistema di manipolazione da remoto permette di spostare le singole sorgenti per posizionarle nelle vicinanze delle celle di irraggiamento.

Ma le radiazioni modificano i materiali prodotti?

A questo punto qualcuno potrebbe chiedersi se l’utilizzo di queste sorgenti radioattive con le loro radiazioni possa “alterare” in qualche modo gli oggetti (e soprattutto gli alimenti) con cui interagiscono. Per tutte le tipologie di attività industriali viste, compresa la sterilizzazione, e per le radiazioni emesse (beta e gamma di energia relativamente bassa) non si possono avere fenomeni di attivazione nucleare dei materiali. Questi si osservano per irraggiamento con neutroni o con radiazioni X di elevata energia (dell’ordine dei MeV).  Quindi tutto ciò con cui queste tipologie di radiazioni entrano in contatto non può essere resa radioattiva.


QUANTE NE SAI?

Abbiamo di recente lanciato sul nostro canale Instagram una serie di quiz a tema nucleare, con cadenza settimanale.
Ecco i quesiti proposti il 22 settembre 2025 (in grassetto le risposte corrette):

1) Quale radiazione scherma un foglio?
a – Particella alpha
b – Raggi gamma
c – Particelle beta

2) La scelta di un radionuclide dipende da
a – Tempo di dimezzamento 
b – Temperature dell’ambiente
c – Densità e spessore del materiale

3)I materiali irraggiati diventano radioattivi? (Nelle applicazioni industriali)
a – Solo i metalli
b – No, per le basse energie
c – Solo per gammagrafie

[N.d.R.: Questi quiz nascono innanzitutto con l’idea di stimolare la curiosità dei nostri follower sulle tematiche che trattiamo e sugli articoli preparati dai nostri esperti. Se alcuni quesiti ti hanno lasciato un po’ “spiazzato”, ma questo ha suscitato in te il desiderio di approfondire e sei arrivato fino a qui, allora l’obiettivo è stato raggiunto! Grazie e alla prossima!]

RIFERIMENTI

  • Isotope Browser – IAEA Nuclear Data Section
  • “WhitePaper Mould level measurement – Measuring the steel level in continuous casting”, Berthold Technologies GmbH & Co., 2020
  • “Attenti al Kripton 85: nuove norme per ridurre il pericolo-radiazioni”, Antincendio, la rivista della prevenzione incendi e della protezione civile, ottobre 2002
  • U.S.NRC – Backgrounder on Commercial Irradiators: https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/commercial-irradiators.html
  • “Radioprotezione avanzata – Radionuclidi e acceleratori di elettroni fino a 10 MeV”, CISU, 2014

Scenari e prospettive per il nucleare in Italia: evento alla Camera dei Deputati

di Pierluigi Totaro

Si è svolto il 20 luglio a Palazzo di Montecitorio un convegno sugli scenari e le prospettive del nucleare in Italia, promosso da Forza Italia, a cui hanno partecipato numerosi esponenti del mondo della ricerca, dell’università, dell’industria e delle autorità nazionali e internazionali. Tra i presenti, anche una rappresentanza del Comitato Nucleare e Ragione, con il presidente Pierluigi Totaro, il coordinatore della sezione di Roma Alessio Iuvara, e i soci Francesco Sozzi e Claudia Gasparrini, neo-consigliera dell’Associazione Italiana Nucleare.

L’evento ha riscosso una notevole partecipazione, ed è il segnale che sul nucleare – come ribadito anche dal Ministro Fratin nell’intervento di chiusura – si è finalmente infranto un tabù ed è possibile tornare a discuterne in maniera pacata, senza ideologie, ascoltando il contributo degli addetti al lavori.
Dalle due tavole rotonde è emerso un messaggio pressoché unanime: l’energia nucleare è indispensabile per il raggiungimento degli obiettivi di decarbonizzazione, ma se si vuole veramente che questa opzione si concretizzi anche per l’Italia, è necessario che tutto il Sistema Paese si muova all’unisono.

Un’impresa difficile, ma non impossibile, e il Comitato Nucleare e Ragione si impegna a fare la sua parte: una qualsivoglia strategia energetica che preveda il ritorno del nucleare, necessita infatti di un ampio consenso non solo a livello politico, ma anche e soprattutto nella popolazione, e questo richiede una attenta attività di comunicazione e di divulgazione scientifica. Competente, oggettiva, chiara.

La chiarezza, soprattutto, è indispensabile: anche oggi, come accaduto in altre occasioni, abbiamo purtroppo notato una certa confusione e qualche ambiguità nel delineare i pregi, i difetti e le tempistiche realizzative delle diverse tecnologie e generazioni di impianti nucleari.

Un approccio tecnologicamente neutrale e privo di “tifoserie” è un presupposto comunicativo fondamentale e su questo aspetto il Comitato Nucleare e Ragione vuole giocare un ruolo importante e di riferimento. Da questo punto di vista, la giornata romana è stata fruttuosa non solo per la nostra presenza al convegno, ma anche per alcuni incontri istituzionali avvenuti a margine, di cui per il momento manteniamo il riserbo, ma che ci lasciano ottimisti. Stay tuned!

Per un maggiori dettagli sugli interventi del convegno, suggeriamo la lettura di questo ottimo articolo pubblicato da Formiche.net: https://formiche.net/2023/07/nucleare-evento-camera/.
Questo il resoconto dell’Associazione Italiana Nucleare, che nell’occasione ha presentato un Position Paper molto interessante:
https://www.associazioneitaliananucleare.it/un-ritorno-dellenergia-nucleare-in-italia/

Il video della mattina è invece disponibile a questo link: https://webtv.camera.it/evento/23025

Radiazioni che Salvano la Vita: Gli Allarmi Antifumo

di Massimo Burbi

Aggiornamento 25/11/2025: abbiamo pubblicato sul nostro canale Instagram alcuni quiz sulle tematiche trattate da questo articolo. Trovate i quesiti e le relative risposte scorrendo fino in fondo alla pagina. Se siete interessati alle puntate precedenti dei nostri quiz, potete leggere gli articoli correlati quiquiquiquiquiquiquiquiquiquiqui e qui.

In decine di milioni di case in tutto il mondo c’è, o c’è stato, almeno un allarme antifumo [1] e per una buona ragione: secondo un report della US National Fire Protection Association il rischio di morire in un incendio in casa cala del 55% se c’è un allarme antifumo funzionante [2].

Esistono due tipi di allarme antifumo: fotoelettrico e a ionizzazione. Quello che molti non sanno, inclusi molti di quelli che se lo ritrovano sopra la testa, è che “a ionizzazione” vuol dire che l’allarme funziona grazie all’Americio 241 (Am241) [3], un nuclide radioattivo che non si trova in natura, per ottenerlo bisogna prendere del Plutonio 239 (sì, proprio quel plutonio lì), irradiarlo con neutroni fino ad ottenere Plutonio 241, che poi per decadimento beta diventa Am241 [4], un processo che può avvenire “pacificamente” in un reattore nucleare, o nell’esplosione di una bomba atomica.

Per conferma guardiamo le prime due immagini, la prima è lo spettro gamma di un allarme antifumo, la seconda è invece lo spettro di un campione di Trinitite, residuo dell’esplosione della prima bomba atomica nel 1945 che era appunto un ordigno al plutonio. In entrambi i casi i picchi gamma dell’Am241 sono in bella evidenza. 

Spettro gamma di un allarme antifumo con i ben visibili i due picchi gamma caratteristici dell’Am241 che si trova nella piccola camera metallica visibile in basso nella foto.
Spettro gamma di un campione di Trinitite raccolto nel sito di esplosione della prima bomba atomica nel 1945. Sono visibili, tra gli altri, i due picchi gamma caratteristici dell’Am241.

All’interno di questo oggetto di uso comune c’è quindi lo stesso radioisotopo rilasciato nell’ambiente da un evento catastrofico come un’esplosione atomica. Cosa ci dice questo? Assolutamente niente, perché per valutare la pericolosità di un oggetto radioattivo contano i numeri e non il certificato di origine.

L’Am241 decade emettendo una particella alfa, trasformandosi così in Nettunio 237 [5]. Sono proprio queste particelle alfa, sparate in tutte le direzioni, a ionizzare l’aria che si trova all’interno della piccola camera metallica visibile nella foto, strappando gli elettroni alle molecole. Gli elettroni, una volta liberi, vengono attratti dall’elettrodo positivo della camera generando un piccolo, ma stabile, flusso di corrente. Quando nell’aria c’è fumo questo flusso rallenta, ed ecco che scatta l’allarme [6].

Un tipico allarme antifumo a ionizzazione acquistabile oggi, come quello testato, ha al suo interno abbastanza Am241 da garantire circa 33,000 decadimenti radioattivi al secondo (0.9 microcurie) [7] che avvengono appena sopra le teste dei presenti nella stanza e continueranno a farlo per molto molto tempo, dato che l’Am241 ha un tempo di dimezzamento di 432 anni [8].

Confezione di un allarme antifumo “a ionizzazione”. Nel retro (a destra) è indicata la presenza di 0.9 microcurie di Americio 241

Quindi ci spaventiamo? Vediamo, iniziamo col dire che la radiazione alfa, fin quando la sorgente resta confinata all’interno della camera, non ha modo di uscire (se non dai piccoli fori per l’aria), e anche se lo facesse sarebbe in grado di viaggiare in aria per non più di qualche centimetro, rivelandosi del tutto innocua (*).

Ma l’Americio 241, nel suo decadimento, emette anche due caratteristici raggi gamma, questi sì capaci di attraversare le pareti della camera metallica e viaggiare in aria per diversi metri fino a raggiungere gli occupanti della stanza. Lo spettro gamma ci dice però che hanno un’energia di 26 e 59 keV [9], molto più bassa di quella dei raggi gamma di origine naturale che tipicamente incontriamo nell’ambiente che ci circonda [10]. Uno studio della Nuclear Regolatory Commission ha stimato che una persona con due allarmi di questo tipo installati in casa riceve una dose aggiuntiva di circa di 0.02 μSv in un anno [11], si prendono più radiazioni mangiando una banana [12]. Per mettere le cose ancora più in prospettiva ricordiamoci che la dose media annua di radiazioni naturali assorbita da un abitante dell’Italia è di circa 3000 μSv, che diventano circa 4000 μSv se si includono contributi “artificiali” come gli esami medici [13].

Si tratta quindi di oggetti innocui, a meno ovviamente di non estrarre la sorgente e mangiarla, cosa da evitare, ma lo stesso vale per altre sostanze che si trovano abitualmente in ambito domestico e in posizioni più accessibili del soffitto [14]. Se qualcuno avesse la strana idea di forzare la camera di ionizzazione per farsi una “mangiata” di Am241 assumerebbe una dose di circa 6000 μSv [15]. E’ il peggio che può succedere se l’oggetto finisce nelle mani di qualcuno con spiccate tendenza autolesioniste, e in termini di radiazioni è comunque paragonabile ad una TAC [16].

Vista dell’allarme smontato. L’Americio 241 si trova all’interno della camera metallica cilindrica visibile in basso a destra. 

Gli incendi uccidono le persone, gli allarmi antifumo, anche quelli radioattivi, le salvano, eppure, se invece che “allarme a ionizzazione” l’avessero chiamato “allarme a radiazioni”, probabilmente molti dei pezzi prodotti sarebbero rimasti sugli scaffali dei magazzini.

Un altro esempio di come percezioni basate sui luoghi comuni possano portarci fuori strada. Fermarsi alle parole e ai nomi, senza andare a vedere i numeri, è come giudicare un pacco dalla confezione, senza guardare cosa c’è dentro.

(*) La radiazione alfa è innocua se la sorgente è esterna al corpo, ma la più pericolosa se la sorgente è interna al corpo.

RIFERIMENTI BIBLIOGRAFICI

[1] https://www.orau.org/health-physics-museum/collection/consumer/miscellaneous/smoke-detector.html

[2] https://www.nfpa.org/News-and-Research/Data-research-and-tools/Detection-and-Signaling/Smoke-Alarms-in-US-Home-Fires

[3][4] http://large.stanford.edu/courses/2011/ph241/eason1/

[5] https://wwwn.cdc.gov/TSP/PHS/PHS.aspx?phsid=809&toxid=158

[6][11][15] https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/smoke-detectors.html

[7] https://wwwn.cdc.gov/TSP/PHS/PHS.aspx?phsid=809&toxid=158

[8][9] http://nucleardata.nuclear.lu.se/toi/nuclide.asp?iZA=950241

[10] https://www.ge.infn.it/~prati/Fisica%20Nucleare%20Applicata/Appendix%20B%20-%20Practical%20Gamm…pdf

[12] https://www.epa.gov/radtown/natural-radioactivity-food

[13] http://www.fisicaweb.org/doc/radioattivita/geiger%20muller/taratura.pdf?fbclid=IwAR0qa8dEUhi0MRd4BS6e7HU_NIAUnmIMO6_2pKj6Vvzdk7ye0b4T7UaWBDI

[14] https://www.emergencyphysicians.org/press-releases/2020/4-25-20-emergency-physicians-drinking-or-injecting-bleach-can-kill-you

[16] https://www.fda.gov/radiation-emitting-products/medical-x-ray-imaging/what-are-radiation-risks-ct

Quante ne sai?

Abbiamo di recente lanciato sul nostro canale Instagram una serie di quiz a tema nucleare, con cadenza settimanale.
Ecco i quesiti proposti il 24 novembre 2025 (in grassetto le risposte corrette):

1) Quale sensore casalingo usa una sorgente radioattiva?
a – Rilevatore di gas
b – Sensore di movimento
c – Rilevatore di fumo

2) Come viene rilevata la presenza di fumo?
a – Riduzione del flusso di corrente nell’aria ionizzata 
b – Blocco del raggio infrarosso tra emettitore e sensore
c – Il calore attiva il sensore termico a ionizzazione

3) Qual dose in un anno con due allarmi antifumo in casa?
a – Meno di mangiare una banana
b – Più di una TAC
c – Come un viaggio in aereo

Fukushima e non solo: Chi ha paura del Trizio?

di Massimo Burbi

Se vi è capitato di avere in camera un orologio, una sveglia o qualsiasi altra cosa con un quadrante luminescente è probabile che abbiate dormito con oggetto radioattivo sul comodino.

Il fenomeno è noto come radioluminescenza [1] e, come dice il nome, è attivato dall’emissione di radiazioni ionizzanti. In origine, per produrre queste radiazioni, era usato il Radio. Avvicinate un geiger al quadrante “al Radio” e la lettura schizzerà a decine di volte il fondo ambientale e se il vetro non bloccasse la radiazione alfa, i numeri salirebbero anche di più.
La fosforescenza con il tempo svanisce, ma Il Radio 226 (da qui Ra226) ha un tempo di dimezzamento di 1600 anni, quindi quelle lancette resteranno radioattive per un pezzo anche dopo aver smesso di girare e di illuminarsi al buio.
Sono oggetti pericolosi? Lo sono stati per chi li ha fabbricati, le cosiddette “radium girls” che dipingevano i quadranti a mano. Del tutto ignare dei rischi, queste ragazze usavano la lingua per appuntire il pennello in modo da rendere il tratto più preciso, oltre a dipingersi unghie, faccia e persino denti per divertimento, ingerendo materiale radioattivo e assumendo dosi tutt’altro che trascurabili [2]. Per chi li tiene sul comodino e non ha la tentazione di smontarli e mangiarne il contenuto, i rischi sono molto più contenuti, Il pezzo testato per questo post fa registrare un rateo di dose a contatto di circa 0.20 μSv/h e a pochi centimetri di distanza si scende rapidamente a valori indistinguibili dal fondo ambientale.  

Più o meno dagli anni ’70 il Radio è stato sostituito dal Trizio, proprio lo stesso Trizio che si trova nell’acqua dei serbatoi della centrale Fukushima Dai-ichi [3] e il cui rilascio in mare scatena periodicamente la fantasia dei tanti sceneggiatori mancati di film che popolano le redazioni di giornale nel nostro paese. Anche il Trizio è radioattivo, ma la radioattività non è tutta uguale, proviamo a capire in cosa il Trizio è diverso dal Radio. 

Il Radio e la sua progenie emettono radiazione, alfa, beta, gamma e anche raggi X [4]. Lo spettro della sua radiazione gamma e X, l’unica penetrante e quindi l’unica rilevante quando si parla di dose da sorgente esterna, è visibile nell’immagine sotto. Ogni picco di emissione ha una sua energia espressa in keV (kiloelettronvolt), in questa sede non è importante capire il significato dell’unità di misura, basta ricordare che più alta è l’energia dell’emissione, maggiore è la dose assorbita. Lo spettro gamma del Ra226 e molto ricco perché include anche la sua progenie, ovvero i suoi prodotti di decadimento che sono a loro volta radioattivi, andiamo dalle poche decine di keV del Piombo 210 fino agli oltre 1700 keV del più energetico picco chiaramente visibile del Bismuto 214. In più, il Radio 226 è anche un emettitore alfa, radiazione innocua fuori dal corpo, ma la più pericolosa se inalata e ingerita.

Spettro gamma di una sveglia con quadrante “al radio”

E il Trizio? Non possiamo vedere lo spettro della sua radiazione gamma, perché non ne emette [5], quindi la sua radiazione non può penetrare il nostro corpo. Anche mettendo insieme abbastanza Trizio da far cantare forte un Geiger, se ci avviciniamo qualunque strumento fatto per misurare la dose dall’esterno non riusciremo a rilevare niente (come illustrato nel video in fondo alla pagina). Cosa succede se lo ingeriamo? Il Trizio non emette nemmeno radiazione alfa, ma solo quella beta con energia massima 18.60 keV (valore medio 5.7 keV) [6]. In altri termini ingerire un Bq (Becquerel, cioè una quantità equivalente ad un decadimento al secondo) di Trizio comporta una dose assorbita circa 15000 volte inferiore rispetto ad ingerire un Bq di Radio [7][8].

Abbiamo capito che non dobbiamo avere molta paura del Trizio, ma qualcuno potrebbe chiedersi se non sia comunque una cattiva idea riversarlo nell’oceano: perché contaminare la “natura”? Tanto per cominciare non si tratta di contaminazione, nell’oceano Pacifico sono già naturalmente presenti 740 PBq di Trizio [9], il che vuol dire che al suo interno avvengono già circa 740,000,000,000,000,000 decadimenti al secondo di Trizio, un numero quasi 1000 volte superiore al totale dei Bq di Trizio presenti nei serbatoi di Fukushima [10]. Nello stesso oceano sono già naturalmente presenti anche 14000 EBq di Potassio 40 [11], un numero con 22 zeri che tradotto vuol dire che nel Pacifico, in un solo minuto, avvengono tanti decadimenti radioattivi di Potassio 40 quanti ne avverranno di Trizio nell’acqua dei serbatoi della centrale di Fukushima in circa 25 anni, o meglio quanti ne avverrebbero se il Trizio, come il Potassio 40, fosse praticamente eterno (tempo di dimezzamento di oltre un miliardo di anni [12]) e non avesse un’emivita di 12.33 anni [13]. In 25 anni si sarà qui dimezzato già due volte.

Radioattività naturale negli oceani [9][11]

Aggiungiamoci che la dose associata all’ingestione di un Bq di Potassio 40 è circa 350 volte superiore a quella associata all’ingestione di un Bq di Trizio [14][15].

Quindi, come al solito, la conclusione è che ciò che è radioattivo non è necessariamente pericoloso e tantomeno letale, specie se si tratta di Trizio.

[1] https://public-blog.nrc-gateway.gov/tag/radioluminescence/

[2] https://www.epa.gov/radtown/radioactivity-antiques

[3] https://www.theguardian.com/environment/2023/feb/15/fukushima-japan-insists-release-of-treated-water-is-safe-nuclear-disaster

[4] http://nucleardata.nuclear.lu.se/toi/nuclide.asp?iZA=880226

[5][6][13] http://nucleardata.nuclear.lu.se/toi/nuclide.asp?iZA=10003

[7][14] http://www.icrp.org/docs/P%20119%20JAICRP%2041(s)%20Compendium%20of%20Dose%20Coefficients%20based%20on%20ICRP%20Publication%2060.pdf

[8][15] https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/336080/HPA-CRCE-048_for_website.pdf

[9][11] https://slideplayer.com/slide/5260718/

[10] https://www4.tepco.co.jp/en/decommission/progress/watertreatment/images/201224.pdf

[12] http://nucleardata.nuclear.lu.se/toi/nuclide.asp?iZA=190040

Festival dell’Energia e dell’Ambiente: quale nucleare di aspetta?

Dal 26 al 28 maggio 2023 si è tenuto a Borgo San Lorenzo (FI) il Festival dell’Energia e dell’Ambiente, evento organizzato dall’associazione Nuova Energheia e promosso dalla Regione Toscana e dall’Unione Montana dei Comuni del Mugello.

L’evento è stato suddiviso in tre tematiche principali, ciascuna delle quali trattata durante una giornata: il clima, le energie rinnovabili e l’energia nucleare.

Il Comitato è stato invitato a partecipare ad un panel domenica 28 maggio intitolato “Quale Nucleare ci Aspetta?” a fianco della dott.ssa Paola Batistoni (ENEA) e del dott. Stefano Lorenzi (Politecnico di Milano), per discutere delle applicazioni innovative delle tecnologie nucleari.

Il primo intervento del panel, a cura di Stefano Lorenzi, ha trattato la storia dell’energia nucleare ed i più recenti sviluppi tecnologici, con riferimento alle tecnologie dei reattori modulari (SMR) ed ai reattori di IV Generazione. Si è poi discusso del ruolo dell’energia nucleare in un futuro caratterizzato da un’elevata penetrazione delle fonti rinnovabili.

Il secondo intervento, a cura di Simone Bleynat (CN&R) si è focalizzato sulle applicazioni più “inusuali” dell’energia nucleare. Più in dettaglio, sono stati trattati i seguenti argomenti:

  • La cogenerazione ed il teleriscaldamento;
  • La produzione di idrogeno, essenziale per la decarbonizzazione dei settori cosiddetti “hard to abate”;
  • La desalinizzazione dell’acqua marina;
  • La propulsione navale;
  • Il repowering di centrali esistenti attualmente alimentate a combustibili fossili.

Le e slides della presentazione di Simone Bleynat sono disponibili a questo link.

L’ultimo intervento, a cura di Paola Batistoni, si è focalizzato sulle tecnologie a fusione attualmente in fase di sviluppo e sull’impatto che esse avranno sul sistema elettrico futuro.

Si è infine dato spazio agli interventi del pubblico, spazio durante il quale sono emersi interessanti elementi di riflessione non solo sulle tematiche presentate, ma anche sullo stato attuale della ricerca in Italia e nel mondo.

Tutti gli interventi del festival, compreso il panel qui descritto, sono stati registrati e sono disponibili sul canale Youtube di Nuova Energheia
(https://www.youtube.com/@NuovaEnergheia).

LA SORVEGLIANZA RADIOMETRICA

di Matteo Frosini

Perché sorveglianza radiometrica?

Per sorveglianza radiometrica si intende il controllo di merci, rifiuti o persone mediante strumenti in grado di rilevare le radiazioni emesse da materiale radioattivo. Lo scopo della sorveglianza è dunque quello di individuare eventuali contaminazioni o nei casi più delicati trasporto irregolare di sostanze radioattive.

Questo tipo di controlli viene eseguito su una vasta varietà di materiali, principalmente materiali metallici e rottami metallici, ma anche su rifiuti destinati a discariche o inceneritori, materiali provenienti da impianti nucleari, rifiuti prodotti dai reparti di medicina nucleare.

Il controllo sui materiali metallici 

I materiali metallici, e più nello specifico i rottami metallici, sono sottoposti, in ingresso agli stabilimenti siderurgici o ai centri di raccolta e smistamento, a rigorosi controlli per identificare l’eventuale presenza di anomalie radiometriche al loro interno. Negli anni sono stati svariati i casi di rinvenimenti di sorgenti orfane (ovvero sorgenti radioattive prive di un possessore al momento del ritrovamento) all’interno di carichi di rottame trasportati via terra (automezzi o treni) e via nave, così come il rinvenimento di materiali metallici tra cui semilavorati e prodotti finiti contaminati da radioattività artificiale. Infatti, quando una o più sorgenti orfane sfuggono ai controlli in ingresso agli stabilimenti che effettuano operazioni di fusione e vengono inserite nel ciclo produttivo, il risultato è la fusione del materiale radioattivo e la contaminazione di gran parte dei materiali con cui la matrice radioattiva entra in contatto. Ancora oggi, nonostante le rigide normative nazionali e internazionali in materia di sorveglianza su questo tipo di materiali, si registrano casi di fusione di sorgenti radioattive, con conseguenze economico-sociali assai rilevanti. In Italia il D.Lgs. 101 del 2020 (che discende a sua volta da una Direttiva Euratom) fornisce le indicazioni per la corretta esecuzione dei controlli e la gestione di un’eventuale emergenza radiologica.

Ma come vengono effettuati i controlli? Secondo quanto indicato dalla legge e dalla norma tecnica di riferimento UNI 10897 del 2016, i controlli di sorveglianza radiometrica prevedono la misurazione del rateo di irraggiamento X e gamma sui carichi di materiali metallici. Le radiazioni gamma (e anche X in misura minore) sono infatti le uniche ad essere sufficientemente penetranti da poter essere rilevate anche attraverso un consistente spessore di materiale metallico (basti pensare alle svariate tonnellate di rottame che sono trasportate da un automezzo).

La strumentazione per la sorveglianza radiometrica

La strumentazione impiegata deve dunque essere sufficientemente sensibile da rilevare le radiazioni emesse da materiali radioattivi, anche di piccole dimensioni. Gli strumenti per la sorveglianza radiometrica possono essere distinti in manuali (o portatili) e fissi (o portali).

Gli strumenti portatili hanno dimensioni ridotte e sono facilmente trasportabili, adatti per eseguire misure anche in spazi ristretti. Sono tipicamente costruiti con sonde a scintillazione aventi un’elevata sensibilità alla radiazione gamma e dotati di asta telescopica per poter scansionare accuratamente tutte le superfici esterne del carico.

Gli strumenti fissi, comunemente chiamati portali radiometrici, sono costituiti da due o più pannelli contenenti  sonde  a scintillazione (un materiale plastico molto sensibile alla radiazione gamma). I pannelli rappresentano ciascuno uno strumento di rilevazione e un software di analisi dei dati permette di combinare le misure fornite da ciascuno di essi, definendo la soglia di allarme e se questa è stata superata o meno. Alcuni portali sono anche in grado di effettuare, con buona approssimazione, una spettrometria nucleare per identificare il radionuclide all’interno del carico (o quanto meno discriminare se di origine naturale o artificiale).

In genere in un impianto con intensi traffici di materiale in ingresso viene installato un portale radiometrico come “filtro” per identificare eventuali carichi “radioattivi”, disponendo poi di uno strumento portatile per identificare l’esatta ubicazione dell’anomalia. Il vantaggio principale dei portali è quello di avere un’elevata efficienza di rilevazione (strumenti con superfici estese in grado di intercettare molta radiazione), mentre i portatili hanno una buona sensibilità spaziale, performanti per la localizzazione esatta della contaminazione anche a seguito dello scarico del materiale.

C:\Users\unieuro\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Portale.png
Esempio di portale radiometrico (strumentazione fissa) e strumento portatile per effettuare la sorveglianza radiometrica.

Quali sorgenti si possono rinvenire nel rottame metallico?

Esiste una vasta gamma di materiali radioattivi che possono essere inavvertitamente o volontariamente inserite nel rottame metallico. Operativamente si distinguono diverse categorie di sorgenti e materiali contaminati:

  • Sorgenti radioattive propriamente dette, si tratta delle sorgenti orfane citate poco sopra, utilizzate in ambito industriale, medico o per applicazioni di ricerca proprio per le loro emissioni radioattive. Alcuni esempi sono le sorgenti industriali per misure di spessore e livello, per gammagrafia e per controlli di qualità, le sorgenti per applicazioni mediche quali radioterapia e diagnostica in medicina nucleare;
  • Sorgenti di tipo improprio, ovvero oggetti metallici fabbricati con materiale radioattivo e che sfruttano gli effetti secondari delle emissioni radioattive.  Alcuni esempi sono i quadranti radio luminescenti (con vernice al Radio-226), rivelatori di fumo contenenti Radio-226 o Americio-241, parafulmini con installate sorgenti di Radio-226 o Americio-241;
  • Metalli contaminati da radioattività artificiale a seguito di fusione accidentale di una o più sorgenti orfane e successiva immissione sul mercato dei manufatti prodotti. Un esempio è il metallo contaminato da Cobalto-60 che, se non correttamente intercettato, può essere impiegato per opere di ingegneria civile;
  • Materiali metallici derivanti dallo smantellamento di impianti chimici industriali o impianti per l’estrazione di minerali, petrolio e gas naturale con ingenti depositi di radioattività naturale (Uranio, Torio e Potassio) che prendono il nome di NORM (Normally Occurring Radioactive Material).
A sinistra testata contenente una sorgente di Cesio-137, a destra un contenitore di sorgente di Cobalto-60. Entrambe sono state rinvenute all’interno di rottame metallico.

A sinistra parafulmine con installata una sorgente di Americio-241, a destra un esempio di deposito incrostato contenente radioattività naturale (NORM).

Nel contesto italiano, il rinvenimento di una sorgente orfana nel rottame metallico rientra nella categoria di emergenza radiologica; secondo quanto indicato dalla legge, deve essere identificata la causa dell’anomalia, identificare il tipo di elemento radioattivo e quantificare la sua attività in termini di Bq (numero di decadimenti al secondo). In funzione del tipo di elemento radioattivo e della sua attività, confrontandola con opportuni livelli di esenzione è possibile stabilire la necessità o meno di smaltirlo in un deposito di rifiuti radioattivi autorizzato. Nel caso di rinvenimento di sorgente orfana la presenza di una targhetta riportante le sue specifiche o lo stesso codice stampigliato su di essa sono di notevole aiuto per identificare e risalire all’ultimo possessore della sorgente.

Contenitore con sorgente orfana e targhetta riportante le sue caratteristiche.

Quali sono i rischi?

Il principale rischio associato al ritrovamento di materiale radioattivo all’interno di rottame metallico è sicuramente l’esposizione esterna alla radiazione gamma emessa ad esempio da elementi radioattivi come Cesio-137, Cobalto-60 o Radio-226. Oltre ai lavoratori direttamente coinvolti nelle attività di trasporto, manipolazione e processamento del materiale anche la popolazione può essere indebitamente esposta a questo tipo di sorgenti, ad esempio durante il trasporto o nel caso di furto (un caso noto è l’incidente di Goiania in Brasile).

Oltre all’esposizione esterna da radiazioni un ulteriore rischio è legato alla contaminazione interna da materiale radioattivo, in caso di fusione infatti la matrice contenente il materiale radioattivo può essere distribuita in sostanze volatili come polveri e fumi ed essere inalata o ingerita dalle persone presenti nelle vicinanze. Oltre a questo va considerato il potenziale rischio di contaminazione dell’ambiente circostante nel caso il contaminante entri in contatto con terreno e falde acquifere sottostanti (anche in tal caso può essere citato l’incidente di Goiania).

Diverse modalità di esposizione al materiale radioattivo (esterna ed interna).

Altri ambiti di applicazione della sorveglianza radiometrica

La sorveglianza radiometrica viene applicata non solo nel commercio di rottami e materiali metallici ma in tutti i casi in cui esista la possibilità di trasporto o traffico illecito di materiale radioattivo. Si trovano strumenti installati all’ingresso di impianti inceneritori e termovalorizzatori, con lo scopo di evitare la combustione di eventuali rifiuti contaminati. Vengono utilizzati appositi portali radiometrici per controllare i rifiuti in uscita dai reparti di medicina nucleare prima dello smaltimento e portali di dimensioni più contenute per il controllo di persone e bagagli in centrali nucleari, ma anche aeroporti e zone doganali per intercettare eventuali contaminazioni e traffici di materiale radioattivo (con particolare attenzione ai materiali fissili).

Esempio di portale radiometrico installato in aeroporto per la sorveglianza del transito di persone e cose.

Per approfondire:

  • “Control and Management of Radioactive Material Inadvertently Incorporated into Scrap Metal”, International Conference Tarragona, Spain, 2009
  • “Radioprotezione avanzata – Radionuclidi e acceleratori di elettroni fino a 10 MeV”, CISU, 2014
  • Norma UNI 10897:2016 – “Carichi di rottami metallici – rilevazione di radionuclidi con misure X e gamma”