I costi del nucleare? Una scelta politica

Pubblichiamo la lettera aperta del Presidente del Comitato Nucleare e Ragione, Pierluigi Totaro, al Presidente di Associazione Italiana Nucleare, Umberto Minopoli, e già pubblicata sul sito www.associazioneitaliananucleare.it


Caro Presidente,

ho letto con estremo interesse la tua lettera nella quale auspicavi un sostegno del Governo Italiano ai progetti di reattori modulari (SMR) e condivido con te l’entusiasmo per questa innovativa tecnologia nucleare che dovrebbe affacciarsi sul mercato nel corso di questo decennio.

Credo infatti che il centro della questione, non più eludibile in un serio dibattito sulla sostenibilità del nucleare, è che i costi di questa tecnologia sono, in definitiva, una scelta politica.

Un rapporto recentemente pubblicato da The Breakthrough Institute – influente think-tank americano che si occupa non di rado di questioni energetiche – analizza alcuni scenari di sviluppo degli SMR NuScale e mostra a quali condizioni economiche essi sarebbero competitivi con le centrali a gas a ciclo combinato, attualmente tra le più convenienti fonti di produzione di energia.

La simulazione presentata si basa principalmente su tre fattori: il costo di costruzione (overnight) previsto per i moduli NuScale, il tasso di sconto applicato all’investimento ed il prezzo del gas naturale.

Tra questi, come sappiamo, il tasso di sconto è l’elemento più sensibile nei progetti nucleari, i quali vedono un ingente investimento iniziale ed un profitto nel lontano futuro, ed è risultato spesso talmente alto (10-12%) da rendere insostenibili progetti di nucleare convenzionale.

Senza addentrarmi nel merito della discussione sul quale sia l’appropriato tasso di sconto da applicare a progetti nucleari, affrontata nel rapporto, mi limito a sottolineare la principale conclusione: la massima differenza di costo (Levelized Cost of Energy, LCOE) tra SMR NuScale e centrali a gas a ciclo combinato, negli scenari considerati, sarebbe pari a 54$ per MWh, ma nella maggior parte dei casi questa sarebbe contenuta sotto i 28$ per MWh.

Tanto per capirci, il sussidio necessario a rendere competitivi gli SMR non sarebbe molto dissimile dagli attuali livelli di incentivo di cui godono le rinnovabili negli USA (fino a 25$ per MWh) o il nucleare convenzionale, in alcuni stati come New York (17$ per MWh).

Ora proviamo a contestualizzare questa cifra nel contesto italiano.

L’Autorità di Regolazione per Energia Reti e Ambiente (ARERA) ha recentemente lasciato inalterato per il quarto trimestre del 2020 il livello degli Oneri di Sistema che grava sulla bolletta elettrica degli utenti domestici italiani per 4.18 centesimi di euro per kWh. Gran parte di questi oneri (il 78.08% nel caso degli utenti domestici) sono incentivi alle fonti rinnovabili e assimilate, cui le famiglie italiane corrispondono 32.64€ (circa 37$) per MWh di energia consumata.

Le famiglie consumano però solo una frazione dell’elettricità in Italia (circa il 22%), quindi l’incentivo alle rinnovabili è maggiore di quanto sopra stimato.

Stando agli ultimi dati disponibili, nel 2019 il totale di questi incentivi che pesano sulla bolletta elettrica ha di poco superato gli 11 miliardi di euro[1] ed è stato distribuito su una produzione rinnovabile di 63 TWh. A conti fatti dunque, le rinnovabili e le fonti ad esse assimilate (come i rifiuti urbani) godono in Italia di un incentivo pari a circa 178€ (circa 210$) per MWh .

Se però andiamo a guardare il dettaglio della ripartizione degli incentivi, vediamo che il fotovoltaico si mangia il 51.77% della torta (quasi 6 miliardi di euro annui), a fronte di una produzione incentivata di 20.6 TWh (sempre nel 2019), portando l’incentivo alla produzione di energia solare alla cifra esorbitante di 282€ per MWh, ovvero circa 330$ per MWh.

Basterebbe dunque un sussidio pari al 10% di quello attualmente goduto dal fotovoltaico per rendere gli SMR competitivi con il gas naturale.

In conclusione, in Italia più che altrove, la presunta insostenibilità economica del nucleare è l’effetto dell’immane distorsione del mercato a favore delle rinnovabili, conseguenza di precise scelte politiche, e potrebbe essere facilmente colmata senza ulteriori oneri per i contribuenti.

Di questi fatti gli italiani dovrebbero essere edotti, affinché anche le giovani generazioni, che di queste decisioni politiche porteranno il peso, possano dire la loro.


Pierluigi Totaro

Presidente del Comitato Nucleare e Ragione
e socio AIN –YGN

[1] Per confronto gli oneri per il finanziamento di attività nucleari residue ammontano a 476 milioni.

Qualche chilo di Uranio per trasferirsi su Marte

di Martina Gallarati

Una missione spaziale è un viaggio unico nel suo genere, che per sua natura deve essere programmato nei minimi dettagli. Sonde inviate per indagare pianeti e corpi celesti lontani, satelliti che orbitano attorno alla terra per raccogliere dati, o navicelle che prevedono la presenza di un equipaggio per condurre ricerche e sperimentazioni: in ognuno di questi casi è necessario che ogni strumento scientifico funzioni correttamente…e che disponga di sufficiente energia elettrica per farlo!

Quando il Sole non basta.

Per alimentare gli strumenti e gli apparati di bordo in uso durante una missione spaziale, tipicamente si utilizzano grandi pannelli fotovoltaici, che convertono l’energia proveniente dai raggi solari in energia elettrica. In aggiunta a questi, sono sempre presenti dei sistemi di accumulo dell’energia prodotta, come ad esempio delle batterie, che alimentano la navicella quando i pannelli fotovoltaici non sono direttamente esposti ai raggi solari. Sappiamo tutti, però, che le batterie hanno un’autonomia limitata nel tempo e che prima o poi si scaricano: a chi di noi non è mai capitato che la batteria del cellulare o dell’auto si scaricasse nei momenti meno opportuni? Supponiamo quindi che la nostra sonda si trovi in una posizione per cui i raggi solari che vi incidono sono troppo deboli. In questo caso entreranno in gioco le batterie, che erogheranno energia elettrica finché anche loro non saranno più utilizzabili. A questo punto, la domanda sorge spontanea: gli scienziati hanno pensato ad un piano C? Naturalmente! La navicella può essere dotata di una massa variabile, a seconda degli utilizzi, di elementi radioattivi. La peculiarità di un elemento radioattivo è che incorre in un processo di decadimento che, tra i suoi effetti, ha anche quello di produrre calore. Questo è l’aspetto sul quale ci concentriamo: il calore prodotto dal decadimento può essere convertito in elettricità. L’indiscutibile vantaggio di questa tecnica è che produce energia continuativamente nel tempo, perché gli elementi radioattivi scelti per questa applicazione hanno una emivita molto lunga e si “consumano” molto lentamente. Questo significa che possono funzionare per tantissimi anni (più di una vita umana!) senza bisogno di alcun intervento di sostituzione o manutenzione, indipendentemente dalla presenza o assenza dell’esposizione ai raggi solari. Si capisce quindi perché l’implementazione di questi elementi radioattivi sia di fondamentale importanza: in questo modo si ha sempre a disposizione dell’energia durante una missione, anche quando i raggi solari sono schermati e le batterie scariche. Se poi immaginiamo che la sonda sia stata lanciata nello spazio per esplorare corpi celesti lontani, troppo distanti dal Sole, allora questa soluzione diventa automaticamente il piano A.

01

Figura 1. I grandi pannelli fotovoltaici della Stazione Spaziale Internazionale. [NASA]

Dai decadimenti radioattivi all’elettricità

Sulla base di questo principio, sono stati realizzati diversi sistemi adatti all’utilizzo nello spazio. Tra questi, i più utilizzati sono senza dubbio i generatori termoelettrici a radioisotopi. Non lasciamoci intimorire dal nome complicato: il funzionamento è esattamente quello descritto precedentemente. Si tratta di dispositivi che contengono una massa di elementi radioattivi a vita lunga; il calore prodotto dal loro decadimento radioattivo viene continuativamente convertito in elettricità. Normalmente sono utilizzati a questo fine il Plutonio 238, l’Americio 241 e, in misura minore, il Polonio 210. Questi generatori sono stati ampiamente utilizzati durante le missioni spaziali. Per riportare solo un esempio, sono stati utilizzati 33 kg di ossido di Plutonio 238 per alimentare la sondadella missione spaziale Cassini-Huygens, una missione frutto della collaborazione tra NASA, ESA ed ASI e avente come oggetto lo studio di Saturno e del suo satellite Titano. I risultati scientifici raccolti durante questa missione stanno permettendo di approfondire la conoscenza della composizione e della struttura del sistema planetario di uno dei più complessi pianeti gassosi.

Riscaldamento nucleare

Una seconda classe di dispositivi è rappresentata dalle unità di riscaldamento a radioisotopi. Questi strumenti funzionano come quelli precedenti, l’unica differenza è che il calore prodotto dal decadimento non è convertito in elettricità bensì utilizzato direttamente. Più precisamente, il calore prodotto viene impiegato per tenere caldi gli strumenti scientifici, così da garantirne il corretto funzionamento. Anche di questo aspetto abbiamo sicuramente fatto esperienza: in inverno, quando fa particolarmente freddo, la batteria del cellulare ha vita molto breve e tende a scaricarsi rapidamente. Per mantenere gli strumenti utilizzati nello spazio alla loro temperatura operativa ideale possono essere sufficienti alcuni grammi di isotopo radioattivo, tipicamente quelli visti precedentemente. Per riportare un esempio di questa applicazione possiamo tornare indietro alla storica missione lunare Apollo 11 che portò l’uomo sulla Luna per la prima volta: il sismometro, posizionato sul Mare della Tranquillità per misurare eventi sismici lunari, era provvisto di alcuni grammi di Plutonio 238. Le unità di riscaldamento a radioisotopi hanno trovato applicazione specialmente sulla Luna, per via della sua fredda e lunga notte, della durata di due settimane.

04

Figura 4. Buzz Aldrin trasporta due componenti importanti per l’acquisizione di alcuni dati lunari: il Passive Seismic Experiments Package (sismometro) a sinistra, e il Laser Ranging Retro-Reflector a destra. [NASA]

Centrali nucleari volanti.

Gli elementi radioattivi non sono gli unici strumenti di natura nucleare che si utilizzano per queste applicazioni. L’ultima categoria di dispositivi è rappresentata da veri e propri reattori nucleari, di dimensioni molto più compatte rispetto a quelli presenti sulla Terra. Il principio fisico che ne governa il funzionamento, tuttavia, è analogo: i reattori nucleari sono in grado di fornire elettricità convertendo il calore prodotto dalle reazioni di fissione dell’uranio. Rispetto al caso precedente, quindi, il calore è prodotto da reazioni nucleari sull’uranio anziché dal processo di decadimento. I piccoli reattori nucleari per la produzione di elettricità a bordo sono in grado di fornirne molta di più dei generatori a radioisotopi citati precedentemente e sono quindi pensati per scopi più ambiziosi. In questo senso, la NASA sta portando avanti un progetto di ricerca molto importante che mira alla realizzazione di Kilopower, un reattore nucleare piccolo e leggero, che dovrebbe contenere circa 44 kg di Uranio 235 e che sarebbe in grado di fornire continuativamente fino a 10 kW di potenza elettrica. Per avere un’idea, il reattore sarebbe in grado di alimentare diverse abitazioni medie per almeno 10 anni! Kilopower avrà il principale obiettivo di alimentare missioni di lunga durata con equipaggio sulla Luna, su Marte e verso altre destinazioni. L’utilizzo di 4 Kilopower potrebbe garantire la fornitura di potenza per alimentare un avamposto umano sulla Luna o su Marte.

La ricerca e lo sviluppo di soluzioni sempre più innovative fanno sì che il fondamentale contributo della fonte nucleare all’ambito spaziale sia senza dubbio destinato ad evolversi e a crescere. Nel frattempo, iniziamo a sognare una vacanza su Marte!

05

Figura 5. Prototipo del reattore Kilopower, sviluppato presso il Glenn Research Centre della NASA. Il reattore è costituito da un nocciolo che ospita l’uranio in basso, dai condotti per il trasferimento del calore al centro e infine dai motori Stirling in alto. [NASA]
06

Figura 6. Immagine futurista del network di reattori Kilopower che garantirebbero l’alimentazione di una postazione su Marte. [NASA]

Per saperne di più:

Immagini:

1. https://www.nasa.gov/archive/content/solar-arrays-on-the-international-space-station

2. https://www.jpl.nasa.gov/missions/cassini-huygens/

3. https://www.nasa.gov/directorates/heo/scan/images/history/December2004.html

4. https://www.nasa.gov/content/buzz-aldrin-deploys-apollo-11-experiments

5. https://aerospaceamerica.aiaa.org/departments/space-nuclear-power-seriously/

6. https://aerospaceamerica.aiaa.org/departments/space-nuclear-power-seriously/

Tre Sistemi Avanzati di reattori da tenere d’occhio per il 2030

[traduzione dell’articolo pubblicato originariamente sul sito del Dipartimento dell’Energia degli Stati Uniti]

Fate largo, millennials: sta arrivando una nuova generazione, e farà la sua prima apparizione entro il 2030.

I reattori nucleari di IV generazione sono in fase di sviluppo attraverso una cooperazione internazionale di 14 nazioni, inclusi gli Stati Uniti [1].

Il Dipartimento di Energia degli Stati Uniti ed i suoi laboratori nazionali stanno supportando la ricerca e lo sviluppo di un’ampia gamma di nuove tecnologie avanzate per i reattori, che potrebbero rappresentare una svolta per l’industria nucleare. Questi sistemi innovativi saranno più puliti, più sicuri e più efficienti rispetto alle generazioni precedenti.

Curiosi?

Ecco tre dei progetti su cui stiamo attualmente lavorando con partner del settore per aiutare a soddisfare le nostre future esigenze energetiche in modo competitivo in termini di costi.

Reattore veloce raffreddato a sodio

Post_1
Figura 1 Gli SFR sono progettati per la gestione di rifiuti ad alto livello di radioattività e, in particolare, per la gestione del plutonio e di altri attinidi. Idaho National Laboratory

Il reattore veloce raffreddato a sodio (SFR, dall’inglese “Sodium-cooled Fast Reactor”) usa metallo liquido (sodio) come refrigerante invece dell’acqua che viene normalmente utilizzata nelle centrali elettriche commerciali statunitensi. Ciò consente al liquido di raffreddamento di funzionare a temperature più elevate e a pressioni molto minori rispetto ai reattori attuali, migliorando l’efficienza e la sicurezza del sistema.

L’SFR utilizza anche uno spettro di neutroni veloce, il che significa che i neutroni possono causare fissione senza essere prima rallentati come nei reattori attuali. Ciò potrebbe consentire agli SFR di utilizzare sia materiale fissile che combustibile esaurito dagli attuali reattori per produrre elettricità.

Reattore ad altissima temperatura

Post_2
Figura 2 I VHTR offrono una vasta gamma di applicazioni per il calore di processo e una possibilità di produzione di elettricità ad alta efficienza. Idaho National Laboratory.

Il reattore ad altissima temperatura (VHTR dall’inglese “Very High Temperature Reactor”) è raffreddato da un afflusso di gas ed è progettato per funzionare a temperature elevate, producendo elettricità in modo estremamente efficiente. Il gas ad alta temperatura potrebbe anche essere utilizzato in processi ad alta intensità energetica che attualmente si basano su combustibili fossili, come produzione di idrogeno, dissalazione, teleriscaldamento, raffinazione del petrolio e produzione di ammoniaca. I reattori ad altissima temperatura offrono notevoli caratteristiche di sicurezza e possono essere facili da costruire e convenienti da mantenere.

Reattore a sali fusi

Post_3
Figura 3 I MSR hanno un ciclo di carburante chiuso che può essere personalizzato per un’efficiente combustione di plutonio e attinidi minori. Idaho National Laboratory

I reattori a sale fuso (MSR dall’inglese “Molten Salt Reactor”) usano fluoro fuso o sali di cloruro come refrigerante. Il refrigerante può fluire su combustibile solido come in altri reattori oppure i materiali fissili possono essere disciolti direttamente nel refrigerante primario in modo che la fissione riscaldi direttamente il sale.

Gli MSR sono progettati per utilizzare meno carburante e produrre rifiuti radioattivi di più breve durata rispetto ad altri tipi di reattori. Hanno il potenziale per cambiare in modo significativo la sicurezza e i costi della produzione di energia nucleare processando carburante in tempo reale, rimuovendo prodotti di scarto e aggiungendo carburante fresco senza lunghe interruzioni di rifornimento.

Il loro funzionamento può essere adattato per ottenere un’efficace combustione di plutonio e attinidi minori, cosa che potrebbe consentire agli MSR di consumare rifiuti nucleari prodotti da altri reattori.

Il sistema può essere utilizzato anche per la produzione di elettricità o idrogeno.

Note e riferimenti:

[1]L’Italia partecipa al consorzio in quanto membro della Comunità europea dell’energia atomica (Euratom).

Reattori veloci raffreddati al sodio:

https://factsheets.inl.gov/FactSheets/sodium-cooled-fast-reactor.pdf

Reattori ad altissima temperatura:

https://factsheets.inl.gov/FactSheets/very-high-temperature-reactor.pdf

Reattori a sali fusi:
https://factsheets.inl.gov/FactSheets/molten-salt-reactor.pdf

Il prof. Ricci socio onorario del CNeR

[Fisico di fama internazionale, alfiere del nucleare in Italia, da sempre in prima linea per la libertà e la dignità della scienza]

ricci300x200

Il Consiglio Direttivo del Comitato Nucleare e Ragione ha conferito la qualifica di Socio Onorario al Prof. Renato Angelo Ricci, da tempo membro del nostro sodalizio e già Presidente Onorario della Società Italiana di Fisica, dell’Associazione Italiana Nucleare e Presidente dell’Associazione Galileo 2001 per la dignità e la libertà della scienza.

Il professor Ricci vanta oltre 300 pubblicazioni nel campo della fisica nucleare fondamentale ed un’instancabile attività divulgativa nel campo scientifico, con particolare riferimento all’uso civile della tecnologia nucleare. E’ socio del Comitato Nucleare e Ragione dal maggio 2013, a seguito dei contatti avuti durante la battaglia politica sostenuta per la convocazione di una Conferenza Nazionale sull’Energia [1], di cui fu convinto sostenitore. Malgrado i suoi numerosissimi impegni, ha sempre seguito con attiva partecipazione la vita sociale del Comitato, contribuendo anche con propri scritti al nostro blog [2].

Il conferimento della qualifica di Socio Onorario – reso possibile da una recente modifica statutaria – è il segno della nostra sentita riconoscenza per l’attività da lui svolta.

Il professor Ricci ha ringraziato in una nota scritta il presidente Totaro per il riconoscimento, augurandosi di poter ancora contribuire al raggiungimento dei nostri comuni obiettivi.

Chi volesse conoscere meglio la figura del prof. Ricci può leggere la sua intervista

rilasciata alla rivista 21esimo Secolo in occasione del suo novantesimo compleanno.

 

Note:

[1]          https://conferenzaenergia.wordpress.com

[2]          https://nucleareeragione.org/2015/04/10/giorgio-salvini-la-civilta-della-scienza/

Mi illumino meglio

Nell’Africa sub-sahariana oltre 700 milioni di persone fanno esclusivo affidamento sulla combustione di biomasse (100% rinnovabili) per soddisfare i loro bisogni energetici. Oltre 600 milioni di persone non hanno accesso all’elettricità.
A livello mondiale, oltre un miliardo di persone non ha accesso all’elettricità e più di 2 miliardi e mezzo di persone non hanno accesso a energia sicura e non inquinante per cucinare (fonte iea.org).
 
Loro si illuminano di meno, a noi la responsabilità di illuminarli ed illuminarci meglio.
milluminomeglioCNeR2.001

NORM in Norway

[storia apparentemente paradossale di “depositi nucleari” in un Paese “100% rinnovabile”]

La produzione di energia elettrica in Norvegia è rinnovabile quasi al 100%: circa il 97% è idroelettrica, il resto viene da gas (poco meno del 2%) ed eolico (poco più dell’1%), “qualcosina” da biomasse ed incenerimento dei rifiuti; si hanno anche “tracce” di produzione da fonte solare, carbone fossile e petrolio.
Non ci sono dunque centrali nucleari in Norvegia. Se ne era parlato anche negli ultimi anni, inseguendo alcune idee innovative basate sull’utilizzo del Torio, ma per ora tutto tace, o meglio è sulla carta a livello di proposal. Ci sono, invece, due reattori di ricerca, ancora operativi, quello ad acqua pesante bollente (Heavy Water Boiling Reactor – HBWR) ad Halden ed il JEEP II a Kjeller; mentre altri due sono “in pensione” da tempo, JEEP I e NORA. (Aggiungiamo come pura curiosità che il “pensionato” JEEP I entrando in funzione nel 1951 fu il primo reattore operativo in Europa, fuori dai confini di Gran Bretagna e Francia, e del blocco sovietico.)
Come praticamente in tutti i Paesi avanzati, la tecnologia nucleare trova applicazione in Norvegia anche in campo medico (e.g. radio-diagnostica e radio-farmacologia) ed industriale (e.g. CND, e trattamento e stoccaggio di rifiuti radioattivi). Tutte queste attività sono monitorate in conformità alla regolamentazione internazionale dalla Statens strålevern, ossia la Norwegian Radio Protection Authority (NRPA).

Fig.1A sinistra, la mappa dei principali “luoghi di lavoro” della NRPA. A destra, in alto, il deposito (pit storage) del combustibile esausto del JEEP II a Kjeller; in basso, sempre a Kjeller, il deposito del combustibile esausto dei due reattori “pensionati” JEEP I e NORA. A Halden il combustibile esausto è stoccato all’interno dello stesso edificio del reattore.
Fig.1 A sinistra, la mappa dei principali “luoghi di lavoro” della NRPA. A destra, in alto, il deposito (pit storage) del combustibile esausto del JEEP II a Kjeller; in basso, sempre a Kjeller, il deposito del combustibile esausto dei due reattori “pensionati” JEEP I e NORA. A Halden il combustibile esausto è stoccato all’interno dello stesso edificio del reattore.

A gennaio 2011 l’inventario dell’IFE [1] concernente il materiale irraggiato registrava un totale di circa 18 tonnellate (comprensive del combustibile ancora all’interno dei reattori funzionanti) – un volume facilmente gestibile, anche tenuto conto del cemento e delle varie strutture con cui tale combustibile viene impacchettato, dato che, per esempio, la densità del U238 metallico è di circa 19 t/m3.
Sembrerebbe dunque che non ci sia molto lavoro per la NRPA. In realtà, i rifiuti radioattivi in Norvegia offrono volumi assai più interessanti, appena ci si sposta dallo stoccaggio del combustibile nucleare esausto a quello dei Naturally-Occurring Radioactive Materials (NORM).
Sebbene, infatti, come abbiamo visto, non utilizzi grandi quantitativi di petrolio per la generazione di energia elettrica, la Norvegia è uno dei maggiori produttori di petrolio al mondo (poco meno del 3% del totale, nel 2013). E l’estrazione del petrolio – come qualsiasi altra attività estrattiva, mineraria, di raffinazione o di lavorazione delle materie prime – comporta tutta una serie di sottoprodotti, alcuni dei quali sono radioattivi, in quanto contengono radioisotopi che abbondano nella crosta terrestre [2]. Va alla grande anche l’estrazione del gas; anzi per molti aspetti va anche meglio di quella del petrolio: la Norvegia, prima dell’embargo europeo alla Russia, era il secondo fornitore di gas dell’UE [3].

Fig. 2“Radioisotopi naturali”. Serie del Torio e serie dell’Uranio: a partire dal Th-232 e dall’U-238 due distinte catene di decadimento generano in Natura due serie di elementi radioattivi. Tali radionuclidi si concentrano in modo diverso nei vari materiali componenti la crosta terrestre.
Fig. 2 “Radioisotopi naturali”. Serie del Torio e serie dell’Uranio: a partire dal Th-232 e dall’U-238 due distinte catene di decadimento generano in Natura due serie di elementi radioattivi. Tali radionuclidi si concentrano in modo diverso nei vari materiali componenti la crosta terrestre.

Dal 1° gennaio 2011 è in vigore un nuovo regolamento per cui il trattamento e la gestione dei rifiuti radioattivi – nonché il monitoraggio ed il contrasto dell’inquinamento radioattivo – sono sotto lo stesso quadro normativo di tutti gli altri prodotti/rifiuti inquinanti e pericolosi (Pollution Control Act – 1981). Il regolamento prevede tra le altre cose due serie di criteri che definiscono le “scorie” radioattive: ad esempio, tutti i rifiuti contenenti ≥ 1 Bq/g da sorgente Ra226 sono definiti come radioattivi, mentre solo i rifiuti radioattivi contenenti ≥ 10 Bq/g da sorgente Ra226 devono essere smaltiti in un deposito (repository) attrezzato allo scopo e stoccati in via definitiva. I rifiuti con livelli di radioattività tra 1 e 10 Bq/g (da Ra226) possono essere gestiti e smaltiti da qualsiasi azienda di rifiuti che possegga una licenza per la gestione dei rifiuti pericolosi. Per la gestione degli altri rifiuti radioattivi è necessaria una licenza ad hoc rilasciata dalla NRPA.
I maggiori quantitativi di “scorie” radioattive contenenti radioisotopi presenti in Natura (NORM) e con livelli di attività da Ra226 ≥ 10 Bq/g provengono dal settore Oil&Gas. Tutto questo materiale, opportunamente trattato, deve dunque confluire in un deposito finale (repository).

Fig. 3“Chi cerca trova”. Una piccola galleria fotografica che mostra alcuni posti dove di solito si annidano e concentrano i NORM nelle varie fasi che caratterizzano l’estrazione del petrolio e del gas.
Fig. 3 “Chi cerca trova”. Una piccola galleria fotografica che mostra alcuni posti dove di solito si annidano e concentrano i NORM nelle varie fasi che caratterizzano l’estrazione del petrolio e del gas.

Risale al 1981 la scoperta di livelli della radioattività “fuori norma” (i.e. valori medi al di sopra di quello atteso per il fondo naturale) in depositi (incrostazioni, sabbie e fanghi) di sottoprodotti dell’estrazione del petrolio e del gas del Mare del Nord. L’attività specifica del materiale secco solido varia dal livello del fondo naturale a diverse centinaia di Bq/g (da Ra226 e Ra228) [4]. Le dosi per i lavoratori coinvolti nelle diverse operazioni di movimentazione e trattamento/pulizia delle attrezzature o dei rifiuti contaminati sono di solito molto basse (valore massimo stimato: 0.2 mSv/anno) – ben al di sotto del limite di dose standard per i lavoratori esposti (20 mSv/anno). Il problema principale è lo smaltimento di questo tipo di rifiuti radioattivi, considerato l’ammontare delle superfici da pulire, la raccolta ed il trattamento delle scorie (i.e. radioattività comunque contenuta, ma grandi quantità da smaltire).

Tab. 1Nell’industria Oil&Gas i NORM vengono suddivisi in categorie a seconda del tipo di incrostazioni/scorie (i.e. in inglese “scale”). Questo è dovuto al fatto che i rifiuti NORM nelle attività di estrazione traggono origine da particolari composti (e.g. il Ra226 tende a concentrarsi maggiormente nel solfato di bario o nel carbonato di calcio, il Pb210 nell’acciaio, ecc.).
Tab. 1 Nell’industria Oil&Gas i NORM vengono suddivisi in categorie a seconda del tipo di incrostazioni/scorie (i.e. in inglese “scale”). Questo è dovuto al fatto che i rifiuti NORM nelle attività di estrazione traggono origine da particolari composti (e.g. il Ra226 tende a concentrarsi maggiormente nel solfato di bario o nel carbonato di calcio, il Pb210 nell’acciaio, ecc.).

Fig. 4 Qualche altro dettaglio su incrostazioni, fanghi, depositi vari, decontaminazione e smaltimento dei NORM nella filiera Oil&Gas norvegese. Questo tipo di NORM viene spesso denominato dagli addetti del settore Low Specific Activity Scale (abbreviato: LSA Scale).
Fig. 4 Qualche altro dettaglio su incrostazioni, fanghi, depositi vari, decontaminazione e smaltimento dei NORM nella filiera Oil&Gas norvegese. Questo tipo di NORM viene spesso denominato dagli addetti del settore Low Specific Activity Scale (abbreviato: LSA Scale).

Dal 2008 la Norvegia dispone di un deposito approntato per ricevere i grandi quantitativi di rifiuti NORM provenienti dalla filiera Oil&Gas, sia nazionale che europea (si vedano Fig. 5 e 6, e relative didascalie per qualche dettaglio). Il deposito si trova a Sløvågen, Gulen, nella contea di Sogn og Fjordane, presso il sito industriale di Stangeneset, ed attualmente è in grado di contenere poco più di 7000 tonnellate di rifiuti NORM, opportunamente stoccati in via definitiva. Tuttavia, si stima che la quantità dei rifiuti possa aumentare in modo significativo in futuro a causa della disattivazione degli impianti offshore.

Fig. 5Sløvågen, Gulen, contea di Sogn og Fjordane, Norvegia. Deposito finale per rifiuti NORM provenienti dall’industria Oil&Gas, presso il sito industriale di Stangeneset. Le operazioni di ricezione sono iniziate nell’ottobre 2008. Nel 2011 erano già state immagazzinate grossomodo 600 t, su di una capacità totale pari a circa 7000 t. Attualmente il tasso di stoccaggio è di circa 50 t/anno. Il sito è candidato a ricevere l’intero ammontare dei rifiuti NORM provenienti dall’industria Oil&Gas europea per i quali è richiesto uno stoccaggio definitivo.
Fig. 5 Sløvågen, Gulen, contea di Sogn og Fjordane, Norvegia. Deposito finale per rifiuti NORM provenienti dall’industria Oil&Gas, presso il sito industriale di Stangeneset. Le operazioni di ricezione sono iniziate nell’ottobre 2008. Nel 2011 erano già state immagazzinate grossomodo 600 t, su di una capacità totale pari a circa 7000 t. Attualmente il tasso di stoccaggio è di circa 50 t/anno. Il sito è candidato a ricevere l’intero ammontare dei rifiuti NORM provenienti dall’industria Oil&Gas europea per i quali è richiesto uno stoccaggio definitivo.

Fig. 6 Ricevimento materiali, movimentazione e stoccaggio al deposito di Gulen.
Fig. 6 Ricevimento materiali, movimentazione e stoccaggio al deposito di Gulen.

Questo è uno dei motivi per cui mentre si utilizza il deposito di Gulen si cercano nuovi spazi e nuove soluzioni.
Problemi analoghi riguardano la gestione dei NORM a più bassa radioattività.
È questo il caso dell’isola di Langøya [5], che è gestita dalla NOAH AS (Norsk Avfallshåndtering AS – letteralmente “azienda norvegese per il trattamento dei rifiuti”), e che sembrerebbe avviata verso una vera e propria ristrutturazione ambientale.
Come si può infatti facilmente notare dalle fotografie in Fig. 7, attualmente l’isola non offre uno spettacolo particolarmente gradevole; il che è dovuto al semplice fatto che dopo essere stata utilizzata per decine di anni come cava (estrazione di calcare), dal 1985 Langøya è una vera e propria discarica di rifiuti speciali. Ed i maggiori volumi sono dovuti allo stoccaggio di ceneri NORM [6], provenienti da vari settori dell’industria manifatturiera e dalla combustione dei rifiuti urbani sia norvegesi che svedesi e danesi. Sull’isola sono anche presenti alcune strutture dedicate al trattamento ed alla trasformazione dei vari rifiuti che vi confluiscono. Va infatti preso atto che una delle occupazioni principali della NOAH sull’isola è quella di rendere i rifiuti ivi trasportati materiali stabili e sicuri per l’ambiente, prima che vengano posizionati nelle ex cave. E se abbiamo capito bene [7], si procede anche ad un parziale recupero dei medesimi attraverso speciali trattamenti che permettono il riutilizzo nell’edilizia.

Fig. 7“Prima della cura”. L’isola di Langøya, nel fiordo di Oslo, tra Norvegia e Svezia, misura 3 km in lunghezza e nella parte più larga appena 500 m. Le foto sono scattate in anni diversi, come si può notare da alcuni cambiamenti morfologici. Nonostante l’elevato livello di sfruttamento fauna e flora selvatica perseverano, offrendo concrete speranze per un completo recupero in futuro.
Fig. 7 “Prima della cura”. L’isola di Langøya, nel fiordo di Oslo, tra Norvegia e Svezia, misura 3 km in lunghezza e nella parte più larga appena 500 m. Le foto sono scattate in anni diversi, come si può notare da alcuni cambiamenti morfologici. Nonostante l’elevato livello di sfruttamento fauna e flora selvatica perseverano, offrendo concrete speranze per un completo recupero in futuro.

I tecnici della NOAH hanno calcolato che, con il tasso di riempimento attuale e tenendo conto dei più probabili sviluppi futuri, entro 10 anni l’isola sarà inutilizzabile, e puntano tutto sulle vecchie miniere di calcare a Brevik (le miniere Dalen).
Lì, forse, potrebbe trovare spazio anche un nuovo deposito dedicato ai NORM più radioattivi.
Tuttavia, secondo quanto riportato dai media, per ora i locali non sono particolarmente entusiasti. Resta quindi molto lavoro da fare e poco tempo per vincere la loro diffidenza con gli argomenti giusti, ossia soluzioni vantaggiose praticabili.

Fig. 8“Dopo la cura”. Ecco come si immaginano alla NOAH la loro isola nel futuro, una volta chiusa definitivamente la discarica e completate le opere di ristrutturazione ambientale.
Fig. 8 “Dopo la cura”. Ecco come si immaginano alla NOAH la loro isola nel futuro, una volta chiusa definitivamente la discarica e completate le opere di ristrutturazione ambientale.

Note:

[1] Institute for Energy Technology. Fonte: Strålevern Rapport – Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management.

[2] Oltre a quelle già elencate, le industrie che si trovano a fare i conti con i NORM sono quelle che prevedono: combustione di carbone fossile, fusione di metalli, lavorazione di terre rare, produzione di fertilizzanti, produzione di materiali edili, riciclo di materiali vari. Per questo motivo spesso si usa l’acronimo TENORM (Technologically Enhanced NORM), per identificare quei materiali in cui la quantità di radioattività risulta aumentata a seguito di una maggiore concentrazione dei radionuclidi ottenuta attraverso i vari processi industriali cui sono sottoposti. È possibile ritrovare i NORM anche in altri settori, al di fuori dell’industria: esposizione al Radon nelle abitazioni, voli aerei, ecc. Per chi desiderasse maggiori dettagli suggeriamo di consultare quanto riportato dalla WNA qui.

[3] Per quanto riguarda la produzione di petrolio sembra che in Norvegia il picco sia stato raggiunto nel 2001. Per il gas ci sono, invece, previsioni più rosee. Qualche dettaglio in più qui e qui.

[4] Sulla base delle misurazioni su campioni di depositi induriti ed incrostazioni (vedi Fig. 4), raccolti dagli impianti offshore norvegesi, il valore medio della concentrazione di radioattività (da Ra226 e Ra228) si avvicina molto a 25 Bq/g: i risultati variavano da pochi Bq/g a qualche centinaio di Bq/g – si noti che l’estremo superiore dell’intervallo risulta comunque assai inferiore ai valori massimi riportati in alcuni studi concernenti la produzione offshore in USA (e.g. 3700 Bq/g) ed onshore in Siria (e.g. 1000 Bq/g).

Qui di seguito alcuni appunti sui radionuclidi più citati nel presente articolo:

  • il Ra226 ha un’emivita di 1600 anni, è un emettitore alfa e proviene dalla serie dell’U238 (vedi Fig. 2);
  • il Ra228 ha un’emivita di 5.75 anni, è un emettitore beta e proviene dalla serie del Th232;
  • una misura della radioattività generica di un determinato materiale non fornisce informazioni significative sulla radiotossicità del materiale stesso (e.g. un’incrostazione di solfato di bario può presentare 23 MBq/t come somma dell’attività specifica di tutti i radioisotopi naturali ivi contenuti). Tuttavia, monitorando i valori dell’attività del radio si utilizza un approccio cautelativo/conservativo, in quanto tra tutti i radioisotopi presenti in Natura quelli del radio sono tra i più attivi (minore emivita), tra i più diffusi e con emissioni più pericolose in caso di contaminazione del ciclo alimentare o di esposizione prolungata.

[5] Isola sita nel Comune di Re, Oslofjord, Norvegia – da non confondersi con l’ominima che si trova sempre nel fiordo di Oslo ma nel Comune di Tjøme, e nemmeno con l’altra omonima ma assai più grande isola dell’arcipelago delle Vesterålen.

[6] Le ceneri volanti (fly ash), per esempio, ottenute come sottoprodotto della combustione di carbone polverizzato nelle centrali termoelettriche, rientrano tipicamente nella categoria NORM, ma con livelli di radioattività da Ra226 inferiori ai 10 Bq/g.

[7] Molte delle informazioni su questo argomento le abbiamo potute raccogliere solo in norvegese.

Fonti principali:

Astrid Liland, NRPA, “Advances in NORM Management in Norway and the Application of the ICRP Publication 103 Recommendations”. First ICRP Symposium, 24-26 October 2011, Bethesda, USA.

Liland A. et al., “Advances in NORM management in Norway and the application of ICRP’s 2007 recommendations”, 2012 Oct-Dec;41(3-4):332-42. doi: 10.1016/j.icrp.2012.06.021. Epub 2012 Aug 22.

Cowie M. et al., “NORM management in the oil and gas industry”, 2012 Oct-Dec;41(3-4):318-31. doi: 10.1016/j.icrp.2012.06.008. Epub 2012 Aug 22.

Per Varskog, Norse Decom AS, “Exposure to radiation in an underground NORM repository”. Dresden, 2010.

Per Varskog, Norse Decom AS, “Norway’s disposal site for oil industry NORM”.

Strand T., “NORM in the Norwegian Oil and Gas Industry – Activity Levels, Occupational Doses and Protective Measures”.

Weers A.W. et al., “Current Practice of Dealing with Natural Radioactivity from Oil and Gas Production in EU Member States”. Report EUR 17621, Directorate-General Environment, Nuclear Safety and Civil Protection, European Commission, Luxembourg (1997).

Strand T. et al., “Deposits of Naturally Occurring Radioactivity in the Production of Oil and Natural Gas”. Norwegian Radiation Protection Authority Report 1997:1, p. 136 (1997).

MacArthur A., “Development and Operation of a NORM Processing and Disposal Facility for the U.S. Oil and Gas Industry”. 19th Annual National Conference on Radiation Control, May 18-21, 1987, Boise, Idaho, USA. Conference on Radiation Control Program Directors, CRCPD Publ. 88-2, Frankfort, KY, USA, 1988.

Al-Masri M.S., Suman H., “NORM Waste Management in the Oil and Gas Industry: the Syrian Experience”. J. Radioanalytical and Nuclear Chemistry 256(1): 159-162, 2003.