Un servizio da tè all’uranio – Fiestaware

di Massimo Burbi

Radioattività in cucina, non quella di cibi “famosi” come le banane o le noci del Brasile, ma quella di oggetti che insospettabilmente contengono molto più uranio della media.

L’Uranio naturale è al 99.28% Uranio 238 (238U), per lo 0.71% Uranio 235 (235U) e il pochissimo che resta è Uranio 234 (234U). Arricchire l’uranio vuol dire aumentare la percentuale di U235, l’unico in grado di sostenere autonomamente una reazione a catena.

Il prodotto di scarto dei processi di arricchimento è il famigerato uranio impoverito, che è il contrario di quello arricchito, ha cioè una percentuale di 235U inferiore a quella dell’uranio naturale, ed è quindi meno radioattivo [1].

Abbiamo tutti sentito parlare degli usi militari dell’uranio impoverito, dalle munizioni anticarro alle corazze. Quello che non tutti sanno è che l’uranio impoverito non sta solo negli arsenali bellici, ma te lo puoi ritrovare anche dentro casa, ad esempio in un servizio da tè o caffè: il piattino e la tazzina che si vedono nelle foto all’apparenza non hanno niente di speciale, ma uno dei due contiene uranio naturale, l’altro uranio impoverito, come facciamo a saperlo? Andiamo per ordine:

Qualcosa di inaspettato si nasconde nello smalto di questo innocuo servizio da tè.

Secondo il New York Times [2] le ceramiche più collezionate negli Stati Uniti sono una serie di piatti, piattini, tazze, tazzine, teiere, etc. chiamati Fiesta (o Fiestaware), popolari per le loro tinte sgargianti: giallo, verde, blu, ma soprattutto rosso/arancio, colore con qualcosa di speciale che non si limita all’apparenza: fino alla metà degli anni ’70 infatti lo smalto usato per dargli quella tonalità vivace conteneva ossido d’uranio. Non è certo il primo esempio di uranio usato come colorante, ma è uno di quelli che ha avuto la maggiore diffusione.

Prima della seconda guerra mondiale lo smalto rosso dei Fiesta conteneva uranio naturale, poi, con l’avvio del progetto Manhattan, il governo americano requisì tutto l’uranio disponibile, e il Red Fiesta sparì giocoforza dalla circolazione, per ritornare nel 1959, stavolta non più con uranio naturale, ma con uranio impoverito, che era appunto lo scarto dei processi di arricchimento.

Negli USA ne sono stati venduti milioni, e ancora oggi sono facili da trovare nei mercatini dell’usato o su ebay, dove una ricerca dà migliaia di risultati.

Il piattino e la tazzina sono appunto dei Fiestaware, ed è fin troppo facile spaventare chi guarda avvicinandoci un Geiger e vedendo la lettura schizzare a più di 600 volte i normali valori ambientali.

La lettura del contatore Geiger a contatto schizza a 32000-35000 conteggi al minuto, circa 600 volte il normale valore ambientale.

In realtà non si tratta di oggetti pericolosi da maneggiare, come spiegato nel video, ma mangiarci sopra vuol dire finire per ingoiare un po’ di uranio. Uno studio della Nuclear Regulatory Commission americana ha stimato che mangiando su questi piatti tutti i giorni una persona finirebbe per ingerire circa 0.2 grammi di uranio all’anno, corrispondenti ad una dose efficace di 0.4 mSv all’anno [3], che è più o meno la stessa che riceviamo dai radionuclidi naturalmente presenti all’interno del nostro corpo e pari a circa il 10% di quella totale a cui siamo esposti in media per cause naturali (Radon, gamma terrestri, raggi cosmici, cibo) [4].

Insomma, io non li uso per mangiarci, ma se lo facessi il problema non sarebbe tanto la radioattività, quanto il fatto che l’uranio, come metalli pesanti tipo mercurio, piombo o cadmio, è chimicamente tossico, e quindi mangiarlo non è proprio una buona idea, ricordando sempre che è la dose che fa il veleno [5] e che una persona in media ingerisce 2 microgrammi di uranio al giorno [6].

Ma insomma come facciamo a distinguere il Fiestaware che contiene uranio impoverito da quello che contiene uranio naturale?

La risposta sta negli spettri gamma. Cominciamo dal piattino, L’238U non lascia traccia in uno spettro gamma, ma si vedono bene le impronte digitali del primo della sua progenie: il Torio 234. Più nascosto, ma comunque presente, è il “nipote”: il Protoattinio 234 metastabile. I radioisotopi successivi della catena di decadimento dell’238U non hanno ancora avuto il tempo di formarsi in quantità misurabile.

Ma soprattutto ci sono i due picchi dell’Uranio 235, ed è lì che dobbiamo guardare, perché la differenza tra uranio naturale, impoverito e arricchito sta proprio nella quantità di 235U.

Spettro vs Spettro. Guardando i picchi di 235U possiamo distinguere l’uranio naturale da quello impoverito.

Confrontando lo spettro del piattino e quello della tazzina a prima vista non sembra ci siano differenze, ma se guardiamo meglio proprio i picchi dell’235U vedremo subito che quelli della tazzina sono molto più “bassi” di quelli del piattino, segno che nella tazzina c’è molto meno 235U, e proprio da qui si capisce che si tratta di uranio impoverito, mentre nel piattino c’è uranio naturale. Il piattino è quindi un pezzo di prima della guerra, mentre la tazzina è post-1959. Chi me li ha venduti come pezzi provenienti dallo stesso servizio non me l’ha raccontata giusta, ma senza volerlo mi ha fatto un favore.

Ecco come visualizzare la differenza tra uranio naturale e uranio impoverito usando delle comuni ceramiche da cucina. La radioattività naturale è ovunque intorno a noi, ma anche quella degli oggetti “artificiali” ci è più vicina di quanto tendiamo a pensare.

P.S. nessuno dei ticchettii che si sentono nel video è dovuto a scorie nucleari nascoste sotto il tavolo.

Spettro vs Spettro: l’uranio usato per lo smalto del Fiestaware è purificato da prodotti del decadimento come piombo e bismuto, responsabili dei picchi a più alte energie, come visibile nello spettro di un campione di Tyuyamunite, un minerale di uranio.

Fonti:

[1] https://www.iaea.org/topics/spent-fuel-management/depleted-uranium

[2] https://www.nytimes.com/2002/12/01/magazine/the-way-we-live-now-12-01-02-object-of-desire-a-different-shade-of-green.html

[3] https://www.nrc.gov/docs/ML0829/ML082910862.pdf

[3] http://tech.snmjournals.org/content/45/4/253.full

[4] https://hps.org/publicinformation/ate/faqs/faqradbods.html

[5] https://www.gov.uk/guidance/depleted-uranium-du-general-information-and-toxicology

[6] https://hps.org/publicinformation/ate/faqs/faqradbods.html?fbclid=IwAR35HD6LVK9K8URzrTBQMp5JaGeFmnc4ZiuhZh9cFqdVHu677srJLUxeH4o

Qualche chilo di Uranio per trasferirsi su Marte

di Martina Gallarati

Una missione spaziale è un viaggio unico nel suo genere, che per sua natura deve essere programmato nei minimi dettagli. Sonde inviate per indagare pianeti e corpi celesti lontani, satelliti che orbitano attorno alla terra per raccogliere dati, o navicelle che prevedono la presenza di un equipaggio per condurre ricerche e sperimentazioni: in ognuno di questi casi è necessario che ogni strumento scientifico funzioni correttamente…e che disponga di sufficiente energia elettrica per farlo!

Quando il Sole non basta.

Per alimentare gli strumenti e gli apparati di bordo in uso durante una missione spaziale, tipicamente si utilizzano grandi pannelli fotovoltaici, che convertono l’energia proveniente dai raggi solari in energia elettrica. In aggiunta a questi, sono sempre presenti dei sistemi di accumulo dell’energia prodotta, come ad esempio delle batterie, che alimentano la navicella quando i pannelli fotovoltaici non sono direttamente esposti ai raggi solari. Sappiamo tutti, però, che le batterie hanno un’autonomia limitata nel tempo e che prima o poi si scaricano: a chi di noi non è mai capitato che la batteria del cellulare o dell’auto si scaricasse nei momenti meno opportuni? Supponiamo quindi che la nostra sonda si trovi in una posizione per cui i raggi solari che vi incidono sono troppo deboli. In questo caso entreranno in gioco le batterie, che erogheranno energia elettrica finché anche loro non saranno più utilizzabili. A questo punto, la domanda sorge spontanea: gli scienziati hanno pensato ad un piano C? Naturalmente! La navicella può essere dotata di una massa variabile, a seconda degli utilizzi, di elementi radioattivi. La peculiarità di un elemento radioattivo è che incorre in un processo di decadimento che, tra i suoi effetti, ha anche quello di produrre calore. Questo è l’aspetto sul quale ci concentriamo: il calore prodotto dal decadimento può essere convertito in elettricità. L’indiscutibile vantaggio di questa tecnica è che produce energia continuativamente nel tempo, perché gli elementi radioattivi scelti per questa applicazione hanno una emivita molto lunga e si “consumano” molto lentamente. Questo significa che possono funzionare per tantissimi anni (più di una vita umana!) senza bisogno di alcun intervento di sostituzione o manutenzione, indipendentemente dalla presenza o assenza dell’esposizione ai raggi solari. Si capisce quindi perché l’implementazione di questi elementi radioattivi sia di fondamentale importanza: in questo modo si ha sempre a disposizione dell’energia durante una missione, anche quando i raggi solari sono schermati e le batterie scariche. Se poi immaginiamo che la sonda sia stata lanciata nello spazio per esplorare corpi celesti lontani, troppo distanti dal Sole, allora questa soluzione diventa automaticamente il piano A.

01

Figura 1. I grandi pannelli fotovoltaici della Stazione Spaziale Internazionale. [NASA]

Dai decadimenti radioattivi all’elettricità

Sulla base di questo principio, sono stati realizzati diversi sistemi adatti all’utilizzo nello spazio. Tra questi, i più utilizzati sono senza dubbio i generatori termoelettrici a radioisotopi. Non lasciamoci intimorire dal nome complicato: il funzionamento è esattamente quello descritto precedentemente. Si tratta di dispositivi che contengono una massa di elementi radioattivi a vita lunga; il calore prodotto dal loro decadimento radioattivo viene continuativamente convertito in elettricità. Normalmente sono utilizzati a questo fine il Plutonio 238, l’Americio 241 e, in misura minore, il Polonio 210. Questi generatori sono stati ampiamente utilizzati durante le missioni spaziali. Per riportare solo un esempio, sono stati utilizzati 33 kg di ossido di Plutonio 238 per alimentare la sondadella missione spaziale Cassini-Huygens, una missione frutto della collaborazione tra NASA, ESA ed ASI e avente come oggetto lo studio di Saturno e del suo satellite Titano. I risultati scientifici raccolti durante questa missione stanno permettendo di approfondire la conoscenza della composizione e della struttura del sistema planetario di uno dei più complessi pianeti gassosi.

Riscaldamento nucleare

Una seconda classe di dispositivi è rappresentata dalle unità di riscaldamento a radioisotopi. Questi strumenti funzionano come quelli precedenti, l’unica differenza è che il calore prodotto dal decadimento non è convertito in elettricità bensì utilizzato direttamente. Più precisamente, il calore prodotto viene impiegato per tenere caldi gli strumenti scientifici, così da garantirne il corretto funzionamento. Anche di questo aspetto abbiamo sicuramente fatto esperienza: in inverno, quando fa particolarmente freddo, la batteria del cellulare ha vita molto breve e tende a scaricarsi rapidamente. Per mantenere gli strumenti utilizzati nello spazio alla loro temperatura operativa ideale possono essere sufficienti alcuni grammi di isotopo radioattivo, tipicamente quelli visti precedentemente. Per riportare un esempio di questa applicazione possiamo tornare indietro alla storica missione lunare Apollo 11 che portò l’uomo sulla Luna per la prima volta: il sismometro, posizionato sul Mare della Tranquillità per misurare eventi sismici lunari, era provvisto di alcuni grammi di Plutonio 238. Le unità di riscaldamento a radioisotopi hanno trovato applicazione specialmente sulla Luna, per via della sua fredda e lunga notte, della durata di due settimane.

04

Figura 4. Buzz Aldrin trasporta due componenti importanti per l’acquisizione di alcuni dati lunari: il Passive Seismic Experiments Package (sismometro) a sinistra, e il Laser Ranging Retro-Reflector a destra. [NASA]

Centrali nucleari volanti.

Gli elementi radioattivi non sono gli unici strumenti di natura nucleare che si utilizzano per queste applicazioni. L’ultima categoria di dispositivi è rappresentata da veri e propri reattori nucleari, di dimensioni molto più compatte rispetto a quelli presenti sulla Terra. Il principio fisico che ne governa il funzionamento, tuttavia, è analogo: i reattori nucleari sono in grado di fornire elettricità convertendo il calore prodotto dalle reazioni di fissione dell’uranio. Rispetto al caso precedente, quindi, il calore è prodotto da reazioni nucleari sull’uranio anziché dal processo di decadimento. I piccoli reattori nucleari per la produzione di elettricità a bordo sono in grado di fornirne molta di più dei generatori a radioisotopi citati precedentemente e sono quindi pensati per scopi più ambiziosi. In questo senso, la NASA sta portando avanti un progetto di ricerca molto importante che mira alla realizzazione di Kilopower, un reattore nucleare piccolo e leggero, che dovrebbe contenere circa 44 kg di Uranio 235 e che sarebbe in grado di fornire continuativamente fino a 10 kW di potenza elettrica. Per avere un’idea, il reattore sarebbe in grado di alimentare diverse abitazioni medie per almeno 10 anni! Kilopower avrà il principale obiettivo di alimentare missioni di lunga durata con equipaggio sulla Luna, su Marte e verso altre destinazioni. L’utilizzo di 4 Kilopower potrebbe garantire la fornitura di potenza per alimentare un avamposto umano sulla Luna o su Marte.

La ricerca e lo sviluppo di soluzioni sempre più innovative fanno sì che il fondamentale contributo della fonte nucleare all’ambito spaziale sia senza dubbio destinato ad evolversi e a crescere. Nel frattempo, iniziamo a sognare una vacanza su Marte!

05

Figura 5. Prototipo del reattore Kilopower, sviluppato presso il Glenn Research Centre della NASA. Il reattore è costituito da un nocciolo che ospita l’uranio in basso, dai condotti per il trasferimento del calore al centro e infine dai motori Stirling in alto. [NASA]
06

Figura 6. Immagine futurista del network di reattori Kilopower che garantirebbero l’alimentazione di una postazione su Marte. [NASA]

Per saperne di più:

Immagini:

1. https://www.nasa.gov/archive/content/solar-arrays-on-the-international-space-station

2. https://www.jpl.nasa.gov/missions/cassini-huygens/

3. https://www.nasa.gov/directorates/heo/scan/images/history/December2004.html

4. https://www.nasa.gov/content/buzz-aldrin-deploys-apollo-11-experiments

5. https://aerospaceamerica.aiaa.org/departments/space-nuclear-power-seriously/

6. https://aerospaceamerica.aiaa.org/departments/space-nuclear-power-seriously/

Centrali vs. Bombe

di Massimo Burbi

Un reattore nucleare può esplodere come una bomba? La risposta è ovvia per chi la sa, ma se nessuno te la spiega c’è il rischio di cadere vittima di luoghi comuni e associazioni mentali spericolate, cosa che in questo caso è fin troppo facile: centrale nucleare e arma nucleare hanno entrambe la parola “nucleare” nel nome, e in assenza di conoscenze specifiche le parole contano.

Un esempio? A fine febbraio la CNN rese noto un sondaggio [1] in cui il 38% dei bevitori di birra intervistati dichiarava che per nessuna ragione avrebbe comprato birra “Corona” a causa dell’epidemia in corso di Coronavirus (che ancora negli USA doveva iniziare a mietere vittime).

Nel caso di bombe e centrali nucleari il collegamento è meno fantasioso, ma le centrali non sono bombe: entrambe usano Uranio, ma l’Uranio non è tutto uguale.
L’Uranio si trova in natura, nel suolo, nelle rocce, nel cibo, nell’acqua, e quindi anche nel nostro corpo. Una persona in media ingerisce 2 microgrammi di Uranio tutti i giorni [2].

L’Uranio naturale è al 99.28% Uranio 238, per lo 0.71% Uranio 235 e il pochissimo che resta è Uranio 234. L’Uranio 238 è fissionabile: se bombardato con neutroni veloci si divide in frammenti più leggeri, ma questo non basta, il solo membro della “famiglia” che quando si fissiona produce un flusso di neutroni capace di provocare ulteriori fissioni e sostenere autonomamente una reazione a catena è l’Uranio 235. Un materiale del genere si dice fissile.

Facendola molto breve, l’Uranio naturale contiene troppo poco U235 e solo portando questa percentuale al 3-5% l’Uranio diventa un “combustibile” adatto per una centrale nucleare [3], in quel caso abbiamo Uranio debolmente arricchito.

E qui c’è una delle differenze tra un reattore è una bomba, perché se un arricchimento al 3-5% è sufficiente per produrre energia in un reattore, per scatenare un’esplosione nucleare servono tipicamente arricchimenti dell’ordine dell’80% e oltre (Uranio altamente arricchito) [4]. Per questo ed altri motivi un reattore per la produzione di energia elettrica non può esplodere come una bomba atomica.

Questo non vuol dire che in una centrale nucleare non possano verificarsi esplosioni, ma si tratta di comuni esplosioni chimiche. Certo, se un’esplosione chimica avviene in un impianto che contiene materiale radioattivo questo materiale può essere diffuso all’esterno, ma qualunque cosa abbiate letto sugli incidenti di Chernobyl o Fukushima, in nessuno dei due ci sono state esplosioni nucleari.

Le uniche esplosioni nucleari causate dall’uomo sono state quelle delle bombe fatte detonare dal 1945 in poi. Non tutti sanno che, oltre a quelli di Hiroshima e Nagasaki, più di 500 ordigni nucleari sono stati fatti detonare in atmosfera in test in varie parti del mondo [5].

Oggi la somma delle esposizioni dovute a test nucleari, produzione di energia nucleare e relativi incidenti contribuisce alla dose individuale media annua della popolazione mondiale per lo 0.2% circa [6], ma volendo guardare dentro a questo 0.2% è stato stimato che il fallout da test nucleari sia responsabile dei 9/10 della radioattività da Cesio 137 del pianeta [7], mentre Chernobyl ha contribuito per circa 1/30, e secondo un documento dell’IAEA i test di ordigni atomici condotti nel mondo tra gli anni ’50 e ’60 hanno immesso in atmosfera da 100 a 1000 volte la quantità di materiale radioattivo disperso dai reattori di Chernobyl [8].

First Nuclear Test 0.025 Sec
L’esplosione di Trinity 0.025 secondi dopo la detonazione

Il primo di questi test avvenne alle 5:29 del mattino del 16 Luglio del 1945 in un sito del deserto di Jornada del Muerto nel New Mexico, nome in codice “Trinity”, dove venne fatta detonare la prima bomba atomica della storia, come prova generale di quello che sarebbe avvenuto in Giappone poche settimane dopo. L’intenso calore dell’esplosione fuse la sabbia del deserto che ricadde a terra allo stato liquido per poi solidificare sotto forma di una materia vetrosa di colore verde olivastro mai vista prima, a cui venne dato il nome di Trinitite. Oggi il sito è stato interamente ricoperto e Trinity è diventata una meta turistica. E’ illegale per i visitatori prendere materiale da terra e portarselo a casa, ma i campioni raccolti tra la fine degli anni ’40 e i primi anni ’50 sono ancora disponibili sul mercato (insieme a molti falsi).

02
Un campione di Trinitite che è stato esposto ad un flusso di neutroni particolarmente intenso e deve quindi essersi trovato molto vicino al punto dell’esplosione.

Non sorprenderà nessuno sapere che ho diversi campioni di Trinitite. Rischio la vita maneggiando oggetti del genere? Per la risposta rimando al video abbinato a questo articolo.

In realtà il problema della Trinitite è che l’emissione gamma residua è talmente debole che non è facile ricavarne uno spettro decente, e infatti prima di trovare il campione giusto ho dovuto testarne sette. Il risultato è riportato di seguito e ha tutte le firme che un campione di Trinitite deve avere.

Per ricavarlo è stata necessaria una misura di 28 giorni, con sottrazione dell’ambiente, all’interno di una camera scudata con circa 2 cm di piombo, 8 mm di peltro, un millimetro di rame e 5 mm di plastica.

03
Lo spettro gamma in fase di acquisizione. Il campione di Trinitite si trova all’interno della camera scudata.

La bomba di Trinity era un ordigno al Plutonio, e infatti si vedono chiaramente i picchi dell’Americio 241, prodotto dal Plutonio 239 attraverso doppia cattura neutronica e successivo decadimento beta. La sabbia del sito di Trinity era ricca di Europio, in particolare dei suoi isotopi stabili, l’Europio 151 e 153, che sono stati attivati dell’intenso flusso di neutroni seguito all’esplosione diventando Eu152 ed Eu154, entrambi radioattivi. Immancabile il Cesio 137, prodotto di fissione per eccellenza. Pare esserci (con qualche riserva, perché siamo nella zona di fluorescenza dello scudo) perfino un picco di Bario 133, originato dalla lente esplosiva della bomba che conteneva un materiale chiamato Baratol a base di Bario 132, isotopo stabile anche lui attivato dal flusso di neutroni.

Riuscire a misurare picchi del genere a distanza di quasi 75 anni è un indizio che questo campione doveva essere estremamente vicino al punto dell’esplosione.

06 - Trinitite T5@Contact - ID - 336 Hours - BG Subtraction - Counts x Bin - Shield V2-2 - 0.036 Clean - 11-06_25-06-20
Lo spettro gamma al termine di una misura di 28 giorni durante il quale il campione ha fornito in media circa 10 conteggi gamma al secondo. L’ambiente della stanza in cui la misura è stata condotta dà, con lo stesso strumento, circa 255 conteggi al secondo.

Per fondere e vetrificare la sabbia sono necessarie temperature di migliaia di gradi, questo ci dà un’idea di cosa voglia dire trovarsi coinvolti in un’esplosione nucleare. E ricordiamoci che l’ordigno di Trinity, così come quelli sganciati in Giappone, erano “giocattoli” rispetto alle bombe termonucleari a fusione testate fino all’inizio degli Anni ’60, capaci di liberare un’energia fino a 2500 volte maggiore.

E’ un bene per tutti che di cose simili non si senta più parlare.

Se vogliamo trovare un collegamento tra bombe atomiche e reattori nucleari per uso civile possiamo parlare del progetto “Megatons to Megawatts”, grazie al quale 500 tonnellate di Uranio altamente arricchito, proveniente dall’arsenale bellico ex sovietico, vennero convertite in 15,000 tonnellate di combustibile per centrali nucleari, dando elettricità a un decimo delle case americane nell’arco di 20 anni e liberando il mondo da qualcosa come 20,000 testate nucleari che sarebbero servite a tutt’altro [9,10].

Le cose sono buone o cattive a seconda dell’uso che ne facciamo, vale anche per l’Uranio.

Note e riferimenti:

[1] https://twitter.com/cnni/status/1233393636672446464?fbclid=IwAR3CUc_CP7mCuFPGmaP2yF5X4rOBoSK08WeFlcQ4_ZMlDhTiDF1YE3L2bcw

[2] https://hps.org/publicinformation/ate/faqs/faqradbods.html

[3] Con qualche eccezione https://it.wikipedia.org/wiki/Reattore_nucleare_ad_acqua_pesante_pressurizzata

[4] https://it.wikipedia.org/wiki/Uranio_arricchito

[5] https://en.wikipedia.org/wiki/Nuclear_weapons_testing

[6] http://www.fisicaweb.org/doc/radioattivita/geiger%20muller/taratura.pdf?fbclid=IwAR1gf3IU-pm4Da2w6a31ogjZ3aEzeaTFltHpKfI7qg973-Q_cmZj_OG3Y5w

[7] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4165831/

[8] https://inis.iaea.org/collection/NCLCollectionStore/_Public/28/058/28058918.pdf

[9]https://en.wikipedia.org/wiki/Megatons_to_Megawatts_Program

[10]https://nucleareeragione.org/2014/03/12/dai-megaton-ai-megawatt/

Aperitivi Nucleari: primo brindisi il 29 Maggio

CNeR_Post_1

CNeR_Post_2

CNeR_Post_3

CNeR_Post_4

Aperitivi Nucleari: primo brindisi il 29 Maggio

UN REATTORE PER ACCENDERE UNA STELLA
Relatore: Alessandro Maffini
Diretta sui nostri canali
FBYoutube
https://www.facebook.com/nucleareeragione/
https://www.youtube.com/channel/UCWXXLCqQHTyGh_fEmoEijIA

Nel tempo che impiegherete a leggere queste righe il nostro Sole avrà rilasciato nello spazio una quantità di energia pari a circa 50 milioni di volte il consumo energetico degli Stati Uniti in un intero anno.

Lo fa da quasi 5 miliardi di anni, e continuerà per altri 5 miliardi.

Chi tiene acceso il Sole e le altre stelle sono le reazioni di Fusione Nucleare.

Non stupisce che Scienziati e Ingegneri stiano provando da più di sessant’anni a sfruttarle qui sulla terra per ottenere una fonte di energia pulita e inesauribile.

Le sfide da affrontare per poter imbrigliare la potenza delle stelle in un reattore sono tante eppure mai come oggi ci siamo avvicinati a questo ambizioso traguardo.

Ne parleremo in questo viaggio che dall’infinitamente piccolo dei nuclei atomici ci porterà a parlare di ciambelle di plasma, enormi magneti e laser potentissimi, fino ad affacciarci sul futuro energetico dell’umanità.

Scarica il documento!

Il prof. Ricci socio onorario del CNeR

[Fisico di fama internazionale, alfiere del nucleare in Italia, da sempre in prima linea per la libertà e la dignità della scienza]

ricci300x200

Il Consiglio Direttivo del Comitato Nucleare e Ragione ha conferito la qualifica di Socio Onorario al Prof. Renato Angelo Ricci, da tempo membro del nostro sodalizio e già Presidente Onorario della Società Italiana di Fisica, dell’Associazione Italiana Nucleare e Presidente dell’Associazione Galileo 2001 per la dignità e la libertà della scienza.

Il professor Ricci vanta oltre 300 pubblicazioni nel campo della fisica nucleare fondamentale ed un’instancabile attività divulgativa nel campo scientifico, con particolare riferimento all’uso civile della tecnologia nucleare. E’ socio del Comitato Nucleare e Ragione dal maggio 2013, a seguito dei contatti avuti durante la battaglia politica sostenuta per la convocazione di una Conferenza Nazionale sull’Energia [1], di cui fu convinto sostenitore. Malgrado i suoi numerosissimi impegni, ha sempre seguito con attiva partecipazione la vita sociale del Comitato, contribuendo anche con propri scritti al nostro blog [2].

Il conferimento della qualifica di Socio Onorario – reso possibile da una recente modifica statutaria – è il segno della nostra sentita riconoscenza per l’attività da lui svolta.

Il professor Ricci ha ringraziato in una nota scritta il presidente Totaro per il riconoscimento, augurandosi di poter ancora contribuire al raggiungimento dei nostri comuni obiettivi.

Chi volesse conoscere meglio la figura del prof. Ricci può leggere la sua intervista

rilasciata alla rivista 21esimo Secolo in occasione del suo novantesimo compleanno.

 

Note:

[1]          https://conferenzaenergia.wordpress.com

[2]          https://nucleareeragione.org/2015/04/10/giorgio-salvini-la-civilta-della-scienza/

Giorgio Salvini, la civiltà della Scienza.

[In ricordo del prof. Giorgio Salvini, grande fisico recentemente scomparso, condividiamo con i nostri lettori i pensieri del prof. Renato Angelo Ricci, presidente dell’Associazione Galileo 2001 e socio del Comitato Nucleare e Ragione.]

Scompare con Giorgio Salvini (1920-2015) un decano della fisica italiana, uno dei grandi protagonisti della rifondazione e della rinascita della ricerca di fisica in Italia negli anni 50-60. Con lui se ne va una grande parte della storia scientifica italiana, in particolare dell’INFN, di cui egli è stato Presidente dal 1966 al 1970, dopo aver diretto l’impresa dell’elettrosincrotrone da 1000 MeV ai Laboratori di Frascati ed esserne stato Direttore negli anni 1957-60, durante i quali portò a termine anche la costruzione di ADA, il prototipo degli acceleratori di accumulazione a fasci incrociati (particelle positive e negative), inventato dal compianto Bruno Touscek. A lui si deve, tra l’altro, la definizione giuridica dell’INFN, l’assunzione dell’organizzazione e programmazione dei Laboratori Nazionali di Frascati da parte dell’INFN, l’istituzione dei Laboratori Nazionali di Legnaro tramite la Convenzione INFN-Università di Padova con la nomina del primo direttore nella persona di chi scrive e l’inserimento a tutto titolo delle ricerche di Fisica dei nuclei nei programmi dell’INFN insieme con quelli di fisica delle particelle.
Importanti e ben conosciuti sono i suoi contributi scientifici in vari campi (fisica nucleare, raggi cosmici, fisica delle particelle) negli Usa, in Italia (Frascati, con l’anello di ADONE), al CERN di Ginevra, dove ha fatto parte del gruppo internazionale che ha scoperto il bosone intermedio portatore dell’interazione elettrodebole, guidato da Carlo Rubbia, che per questo ha ottenuto il Premio Nobel.
Altrettanto importanti la sua grande capacità organizzativa, il suo magistero come docente, il suo impegno civile e culturale. E’ stato Presidente dell’Accademia dei Lincei (1990-94) e Ministro della Ricerca nel Governo Dini (1995-96).
La sua non comune curiosità culturale, il suo rigore morale, la sua cristallina onestà umana e intellettuale, erano parte essenziale del suo carattere diretto e sincero, che premiava allievi, colleghi e collaboratori con la stima, l’amicizia e l’affetto oltre alla certezza di un vero punto di riferimento scientifico ed umano.
Per questo è doveroso ricordarne, oltre ai grandi meriti già accennati, l’impegno e l’attenzione rivolti alla divulgazione e alla difesa delle conoscenze scientifiche in nome della loro verità, anche se a volte scomoda, con la consapevolezza di una battaglia culturale giusta e necessaria anche se non facile. Ciò l’aveva condotto ad aderire, negli anni 2000, all’Associazione Galileo 2001, di cui fu uno dei membri fondatori in nome di quella “libertà e dignità della Scienza” di cui egli stesso era certamente, oltre che un fautore, un indiscusso esempio.
Come Presidente Onorario, insieme con Umberto Veronesi, dell’Associazione, fu lui ad introdurre il primo nostro Convegno tenutosi a Roma nella sede del CNR il 19 febbraio 2004 dal titolo significativo: “ I Costi della Non-Scienza: Il Principio di Precauzione”. Egli ci è stato da allora sempre accanto, come prezioso e saggio consigliere fino ad ancora pochi anni addietro quando ci stimolava a prendere posizione contro le “superficialità intellettuali e le ipocrisie culturali ”spesso purtroppo dominanti. E’ con questo spirito che egli fu ancora tra i primi firmatari della nostra Lettera aperta del 13 marzo 2012 all’allora Governo Monti, ad un anno di distanza dall’incidente di Fukushima, a seguito del terribile Tsunami del 2011 in Giappone, e del successivo incredibile referendum in Italia. In tale documento si denunciava apertamente la mancanza di “un adeguato e convincente piano nazionale di sviluppo energetico” .
La sua memoria, insieme con quella di tutti coloro che con noi hanno condotto queste doverose battaglie, resta come un incentivo a restare, in un modo o nell’altro, sulla breccia.
Renato Angelo Ricci.

Link originale: http://www.galileo2001.it/rapid/page4/page4.html