Energia low carbon a chilometro zero – zero soluzioni, molti problemi

[numeri alla mano si dimostra come proporre l’utilizzo esclusivo di energia rinnovabile prodotta localmente non sia affatto una buona idea in un Mondo dove la maggior parte della popolazione va concentrandosi in megalopoli – ricordando che abbinare a tale proposta quella di una riduzione dei consumi a livello globale con “tagli lineari” significa distruggere le speranze di chi lotta per uscire dalla povertà materiale]

Alcuni ambientalisti e sostenitori delle energie rinnovabili hanno una preferenza ideologica per gli impianti di dimensioni ridotte e su scala locale – a livello di area metropolitana, per esempio. Che fare allora se il vostro quartiere si presenta così?

Fig.1Skyline di Tokyo
Fig.1 Skyline di Tokyo

Ad alcune persone potrebbe allettare l’idea di far funzionare Tokyo utilizzando esclusivamente energia rinnovabile prodotta localmente. Ma incontreranno qualche seria difficoltà a metterla in pratica.
Dal 2008 la maggior parte dell’umanità vive in città. Ed entro il 2050 è probabile che la tendenza si consolidi – alcune stime si aggirano attorno al 70-80%. La sfida energetica chiave di questo secolo sarà il soddisfacimento del fabbisogno delle megalopoli, e l’energia prodotta a livello locale e distribuita “a chilometro zero” non può essere una soluzione. Cerchiamo di capire il perché sbrogliando la matassa delle questioni coinvolte in questo “macro problema energetico”.
Innanzitutto alcune considerazioni. Un abitante del Nord America in media ha un consumo energetico annuo pari a poco più di 7 tonnellate equivalenti di petrolio (tep). Il che equivale a circa 81 MWh/p/anno, ossia ad un tasso di utilizzo di potenza media di 9 kW pro capite – quasi il doppio di quello che si ha in Paesi come Germania, Francia e Giappone. E questo senza che si abbiano evidenze che i nordamericani godano di maggiore benessere a causa del loro uso maggiore di energia: gli abitanti degli Stati Uniti d’America non vivono più a lungo, non sono più sani, o meglio istruiti di altri abitanti dei Paesi c.d. sviluppati che consumano quantità di energia pro capite pari alla metà. Inoltre occorre sottolineare che le emissioni globali di anidride carbonica diminuirebbero di quasi il 10% se i nordamericani consumassero come gli europei. Dunque, non è necessario né auspicabile che gli abitanti dei Paesi in via di sviluppo emulino in tutto e per tutto i modelli di consumo del Nord America.

Fig.2Consumo di energia primaria pro capite per 4 Paesi campione. Storico 1965-2014 – si noti la progressiva diminuzione in atto anche prima della crisi mondiale del 2008-2009. Fonte: elaborazione CNeR su dati World DataBank e BP2015.
Fig.2 Consumo di energia primaria pro capite per 4 Paesi campione. Storico 1965-2014 – si noti la progressiva diminuzione in atto anche prima della crisi mondiale del 2008-2009. Fonte: elaborazione CNeR su dati World DataBank e BP2015

Un’ulteriore prova a favore dell’opportunità di limitare e ridurre i consumi di energia pro capite nei Paesi sviluppati è data dalla stessa evoluzione dei loro consumi negli ultimi decenni, che sembrano aver raggiunto il picco quasi ovunque. Per esempio, il consumo pro capite è diminuito costantemente nel Regno Unito nell’ultimo decennio, ed è ora al punto più basso da oltre quattro decenni. Declini evidenti si hanno anche in Germania e Giappone, e negli stessi Stati Uniti d’America, senza che siano state riscontrate riduzioni della qualità della vita.
Qualsiasi politica climatica/energetica sensibile agli effetti sul lungo termine dovrebbe includere una forte determinazione a favorire la continuazione di questo trend.
La convinzione che il Mondo intero possa passare ai livelli americani di consumo dell’energia godendo contemporaneamente di un sistema di produzione a basse emissioni di carbonio entro la metà di questo secolo non solo ignora le lezioni vitali apprese durante le transizioni energetiche precedenti avvenute nel corso della storia dell’umanità, ma, dato il ruolo attuale delle energie rinnovabili e del nucleare, appare anche delirante.
Un buon target per i consumi energetici pro capite potrebbe essere il Giappone, oppure Hong Kong, visto che, come abbiamo detto, le città svolgeranno con ogni probabilità un ruolo chiave.
Come ridurre dunque il consumo di energia?
Il modo più efficace per farlo è semplice: renderlo “denso”.
Dunque entro il 2050 ci servono molti impianti centralizzati di grandi dimensioni, di qualsivoglia fonte sostenibile, eolica, solare o nucleare. Oppure ci potrebbero essere utili grandi centrali nucleari ed idroelettriche, grandi parchi fotovoltaici, eolici e marini (ad energia mareomotrice), abbinati a piccole centrali nucleari modulari e/o idroelettriche, e ad elaborati sistemi di pompaggio e stoccaggio. (Presumendo, speranzosi, che nei prossimi 35 anni riusciremo a sbarazzarci dei combustibili fossili almeno nella produzione di energia elettrica – una prospettiva ad oggi improbabile.)
In ogni caso la risposta non è l’energia “diffusa localmente”, per alcuni semplici motivi che individueremo qui di seguito.
Prendiamo Manhattan. Non è certo un esempio tipico di quello che la maggior parte di noi considera come un “ideale verde”. Eppure a Manhattan si ha un consumo di energia per abitante significativamente più basso che in quasi ogni altra città americana. Allo stesso tempo nel suo complesso il consumo di energia di questo “quartiere” è di gran lunga maggiore della quantità di energia che potrebbe essere fornita in teoria dalle fonti rinnovabili locali. In media un isolato a Manhattan consuma energia ad un tasso di oltre 1000 kWh per metro quadrato all’anno, una densità di potenza superiore a 100 W/m2 [1] – quasi due ordini di grandezza superiore alla densità di potenza dell’eolico [2] [3]; sempre che si possa anche solo ipotizzare di “riforestare” Manhattan con delle pale eoliche. E le potenzialità dell’energia solare non ci confortano di certo. Se si potesse coprire il 20% di Manhattan di pannelli solari avremmo grossomodo 4 W/m2 [2] [4].
Che dire del il resto del Nord America? Una volta ridotto il consumo di energia pro capite ai livelli giapponesi, un’idea sensata – ma forse impopolare – potrebbe essere quella di far funzionare molte città americane principalmente grazie alle fonti rinnovabili locali. O no?
Il grafico sottostante mostra la densità di popolazione rispetto alla densità di potenza resa disponibile in uno scenario di minori consumi pro capite per alcune città campione degli USA (USA in Japanese style):

Fig.3Densità di potenza media utilizzata in alcune città campione degli USA, dove i consumi sono stati ridotti ai livelli medi giapponesi (3,6 tep pro capite di energia primaria). Fonte: elaborazione CNeR su dati U.S. Census Bureau, Wikipedia e BP2015
Fig.3 Densità di potenza media utilizzata in alcune città campione degli USA, dove i consumi sono stati ridotti ai livelli medi giapponesi (3,6 tep pro capite di energia primaria). Fonte: elaborazione CNeR su dati U.S. Census Bureau, Wikipedia e BP2015
Tab.1Confronto tra due diversi casi di “consumo energetico” in alcune città campione degli USA. Il “caso 2” è quello riportato in Fig.3 (USA in japanese style); il “caso 1” è quello basato sui consumi medi pro capite di un cittadino statunitense (7,2 tep di energia primaria). Fonte: elaborazione CNeR su dati U.S. Census Bureau, Wikipedia e BP2015
Tab.1 Confronto tra due diversi casi di “consumo energetico” in alcune città campione degli USA. Il “caso 2” è quello riportato in Fig.3 (USA in japanese style); il “caso 1” è quello basato sui consumi medi pro capite di un cittadino statunitense (7,2 tep di energia primaria). Fonte: elaborazione CNeR su dati U.S. Census Bureau, Wikipedia e BP2015

Solo una città con bassa densità di popolazione come Phoenix ha una qualche possibilità di ottenere la maggior parte della sua energia da fonte rinnovabile. Ricoprendo infatti il 25% di Phoenix di pannelli fotovoltaici teoricamente si avrebbe la totale copertura del fabbisogno energetico della città. (L’Arizona è assolata!) Tuttavia, trattandosi di una superficie molto estesa, è facile immaginare che qualcuno avrebbe qualcosa da ridire a riguardo [5]. In ogni caso rimarrebbe un problema ancora più grande, e ad oggi insormontabile: ottenere più del 50% dell’energia di Phoenix da fonte solare locale richiederebbe un modo economico per immagazzinarla su larga scala.
Un sistema che prevede più del 50% di energia proveniente da fonte solare inevitabilmente richiede la contabilizzazione delle superfici di suolo da dedicare a grandi sistemi di immagazzinamento, e delle notevoli perdite, causate sia dalla ridotta efficienza dei sistemi fotovoltaici ai quali viene abbinato lo stoccaggio dell’energia elettrica prodotta sia dalla decurtazione degli eccessi di produzione sfasati rispetto ai picchi di domanda.
La prospettiva di avere città nordamericane che funzionano in gran parte a “fonti rinnovabili locali” sembra quindi improbabile, e l’83% dei nordamericani vive in città.
Passiamo al resto del Mondo.
Le 200 aree urbane più grandi del Mondo ospitano oltre 1,2 miliardi di persone, e un quarto di queste aree sono più densamente popolate di New York (10.000 persone per chilometro quadrato) – come illustrato dal seguente grafico:

Fig.4Densità di popolazione nelle 200 aree metropolitane più grandi del Mondo. Fonte: (R. Wilson, 2013)
Fig.4 Densità di popolazione nelle 200 aree metropolitane più grandi del Mondo. Fonte: (R. Wilson, 2013)

Prima di chiederci se queste città possano funzionare a “fonti rinnovabili locali” dobbiamo evidenziare le disparità che si riscontrano attualmente nel consumo di energia. Qui di seguito riportiamo un confronto tra la popolazione di alcuni Paesi campione ed il loro consumo di energia pro capite – le popolazioni sono tracciate su una scala logaritmica a causa di Cina e India.

Fig.5aConsumi di energia primaria pro capite di alcuni Paesi campione per il 2014. Fonte: elaborazione CNeR su dati World DataBank e BP2015
Fig.5a Consumi di energia primaria pro capite di alcuni Paesi campione per il 2014. Fonte: elaborazione CNeR su dati World DataBank e BP2015
Fig.5bCopertura dei consumi di energia primari – Alla voce North America abbiamo sommato i dati di USA, Canada e Messico. Complessivamente i Paesi campione in figura rappresentano circa il 68% dei consumi mondiali dell’anno 2014. Fonte: elaborazione CNeR su dati BP2015
Fig.5b Copertura dei consumi di energia primari – Alla voce North America abbiamo sommato i dati di USA, Canada e Messico. Complessivamente i Paesi campione in figura rappresentano circa il 68% dei consumi mondiali dell’anno 2014. Fonte: elaborazione CNeR su dati BP2015

Mentre ci sono circa 350 milioni di nordamericani che possono, e dovrebbero, ridurre il loro consumo di energia portandolo ai livelli europei, ci sono anche molti abitanti del resto del Mondo – ma anche negli stessi USA – che devono aumentare il loro consumo di energia in modo significativo per migliorare la loro qualità di vita. Per la precisione oltre 35 Paesi del Mondo – con una popolazione totale di oltre 2 miliardi di abitanti – hanno un consumo pro capite inferiore al 10% di quello del Nord America.
Nonostante i desideri (e gli imperativi) di alcune ONG ambientaliste (si veda per esempio questo rapporto WWF a pagina 11) non è auspicabile proporre una riduzione del consumo di energia a livello globale. Bisogna entrare nel dettaglio. È infatti vero che il mondo c.d. sviluppato consuma energia in eccesso, ma nei Paesi sulla via dello sviluppo il consumo di energia è ancora troppo basso ed una sua eventuale diminuzione avrebbe senz’altro impatti negativi. Dovremmo pertanto da una parte ridurre il consumo eccessivo nei Paesi sviluppati e dall’altra aumentare il consumo di energia nei Paesi in via di sviluppo.
Tenendo buono l’esempio del Giappone, se le popolazioni delle 200 più grandi città del Mondo consumassero energia con il tasso giornaliero giapponese si avrebbe una situazione come quella descritta dal seguente grafico:

Fig.6Densità di potenza media utilizzata nelle 200 aree metropolitane più grandi del Mondo, dove si è assunto che i consumi di tutti gli abitanti siano conformi a quelli di un giapponese medio. Fonte: (R. Wilson, 2013)
Fig.6 Densità di potenza media utilizzata nelle 200 aree metropolitane più grandi del Mondo, dove si è assunto che i consumi di tutti gli abitanti siano conformi a quelli di un giapponese medio. Fonte: (R. Wilson, 2013)

In totale 10 città avrebbero una densità di potenza utilizzata superiore a 100 W/m2, 56 città una superiore a 50 W/m2, mentre 181 città ne avrebbero una superiore a 10 W/m2 [1]. Ed abbiamo visto che le fonti rinnovabili difficilmente possono offrire più di 15 W/m2 su larga scala – anzi è più probabile che l’offerta rimanga nella gamma 1-10 W/m2. Questo significa che il 90% delle 200 città più grandi della Terra quasi certamente non può essere alimentato principalmente da energia rinnovabile prodotta localmente. La densità di popolazione di queste città non è significativamente diversa rispetto al resto delle città del Mondo; possiamo quindi concludere che la stragrande maggioranza delle città non può essere alimentata da fonti rinnovabili “local”.

E questo suggerisce l’esistenza di seri limiti al ruolo dell’energia “local” ovunque nel Mondo, un Mondo in cui entro 35 anni oltre il 70% di noi probabilmente vivrà in città.

Le prospettive sono ancora peggiori considerando i diversi Paesi presi singolarmente. Per esempio, delle 200 più grandi aree urbane del mondo, 17 si trovano in India. Eccole raccolte in un grafico:

Fig.7Densità di potenza media utilizzata in 17 delle 200 aree metropolitane più grandi del Mondo, tutte situate in India e nelle quali si è assunto che i consumi degli abitanti siano conformi a quelli di un giapponese medio. Fonte: (R. Wilson, 2013)
Fig.7 Densità di potenza media utilizzata in 17 delle 200 aree metropolitane più grandi del Mondo, tutte situate in India e nelle quali si è assunto che i consumi degli abitanti siano conformi a quelli di un giapponese medio. Fonte: (R. Wilson, 2013)

120 milioni di persone vivono in queste città. Ricoprirle interamente con pannelli fotovoltaici con fattore di capacità pari al 10% significherebbe ottenere meno della metà del loro fabbisogno energetico.
E guardate quel puntino in alto a destra: è Bombay. Questa città, per coprire tutto il suo fabbisogno energetico (Japanese style) da fonte solare [6], dovrebbe sfruttare quasi il 100% della radiazione solare che la colpisce – una prospettiva remota.
Questa altissima densità di popolazione è sistematicamente ignorata dagli ambientalisti occidentali che chiedono più “energia disseminata” quale soluzione ai problemi energetici dell’India.
In conclusione, entro il secolo corrente la maggior parte dell’umanità vivrà in grandi città densamente popolate. Se i cittadini di queste città raggiungeranno una qualità di vita maggiore sarà solo generando energia centralizzata in grandi quantità, e grazie a reti di trasmissione e distribuzione ottimizzate e ben sviluppate.
Qui non si tratta di preferenze ideologiche, ma di fare i conti con la dura realtà.

Fig.8Skyline di Città del Messico
Fig.8 Skyline di Città del Messico

Acknowledgments:

Questo post è una nostra rielaborazione, con integrazioni ed aggiornamenti, dell’articolo “The Future of Energy: Why Power Density Matters” di Robert Wilson, pubblicato su theenergycollective.com l’8 agosto 2013.

Note:

[1] Con “densità di potenza” si intende qui la “densità di potenza utilizzata”, ossia il rapporto tra il valore medio della potenza utilizzata annualmente da una data popolazione e la superficie di territorio occupata da tale popolazione.

[2] Per brevità chiameremo “densità di potenza” anche il valore medio della potenza generata/disponibile per metro quadrato di superficie occupata dagli impianti di produzione dell’energia elettrica. Alcuni chiamano questa grandezza derivata “densità di potenza areale” (areal power density).
Per ulteriori dettagli si vedano le note qui. Nel caso di fonte eolica, attenzione a non confondere la densità di potenza (output elettrico) con la potenza erogata dal vento per unità di superficie spazzata dalle pale degli aerogeneratori (input cinetico); e a non dimenticare che gli aerogeneratori devono essere disposti ad una distanza sufficiente gli uni dagli altri onde evitare che “si rubino il vento tra di loro”. (Per esempio gli esperti consigliano per la progettazione di un parco eolico di non posizionare gli aerogeneratori ad una distanza inferiore a 5 volte il diametro dei rotori – ovviamente se montiamo un solo aerogeneratore la densità di potenza erogata è notevolmente superiore; ma in questo caso stiamo parlando di energia a chilometro zero ad un livello local molto spinto.)

[3]David MacKay nel libro “Energia sostenibile – senza aria fritta” giunge ad una stima di 2 W/m2 come valore medio per impianti onshore su larga scala; altri studi più recenti sulla produzione degli impianti eolici di grosse dimensioni (sia onshore che offshore) riportano perlopiù valori medi in un range perfettamente conforme: 1-3 W/m2. Forniamo anche un esempio concreto, London Array, il parco eolico offshore più grande al Mondo in funzione dal 2013 nel mare di fronte alla foce del Tamigi: capacità 630 MW; area occupata 100 km2; fattore di capacità atteso 39%. Da cui: 630 MW / 100 km2 * 39% ≈ 2,5 W/m2. E questo con una locazione dell’impianto ottimale per quanto riguarda la ventosità.
Per ulteriori approfondimenti sui limiti fisici della generazione di elettricità da fonte eolica:

Lee M. Millera et al., “Two methods for estimating limits to large-scale wind power generation” – PNAS September 8, 2015 vol. 112 no. 36 pp. 11169-11174

Amanda S. Adams, David W. Keith, “Are global wind power resource estimates overstated?” – Environmental Research Letters, 25 February 2013, Volume 8, Number 1

[4]          Tipicamente i valori registrati nei parchi fotovoltaici di grandi dimensioni variano nell’intervallo 3-10 W/m2. L’anno scorso è uscito un report del MIT (“The Future of Solar Energy”) dove si dimostra che considerando il valore medio del soleggiamento sull’intera superficie degli Stati Uniti d’America il massimo teorico risulta essere pari a 15 W/m2. Per gli impianti CSP si stima di superare anche i 20 W/m2 su larga scala (in zone caratterizzate da particolare soleggiamento, per esempio i deserti). Paghiamo una pinta di birra (vel similia) a chiunque riesca a dimostrare – dati di produzione alla mano – che un parco fotovoltaico di grandi dimensioni è in grado di a generare mediamente (24/7) una potenza elettrica con una densità superiore a 20 W/m2.

[5]          Bisognerebbe mettere in conto tra le altre cose che oggi come oggi gli abitanti di Phoenix godono dell’efficiente fornitura di elettricità proveniente da Palo Verde. Questa centrale nucleare occupa complessivamente un’area di 1600 ettari e produce in media 29,25 TWh all’anno, con un fattore di capacità medio calcolato sulla nameplate capacity pari all’85% – da cui una densità di potenza > 200 W/m2, tenendo conto anche della superficie dei parcheggi per i dipendenti della centrale!

[6]          Per quanto riguarda il valore medio annuale della Direct Normal Irradiation, Bombay (Mombay) si trova nella fascia dei 1300-1500 kWh/m2, come si può vedere qui; mentre per quanto riguarda la Global Horizontal Irradiation si hanno in media circa 1900-2000 kWh/m2/anno, come si può vedere qui. Questo significa avere rispettivamente 148-171 W/m2 e 217-228 W/m2 di irradianza diretta normale ed orizzontale.

Annunci

News from Down Under

[qualcosa si muove anche laggiù dall’altra parte del mondo?]

Fa caldo in Australia: è estate adesso.

26
Fig.1: Mappa delle temperature massime (valori medi) – Fonte: Ufficio meteorologico del Governo australiano

L’Australia è caratterizzata da un clima che, tra le altre cose, favorisce i grandi incendi: lunghi periodi di forti piogge alimentano la crescita delle foreste e della vegetazione in generale, e si alternano ad altrettanto lunghi periodi di siccità e caldo secco.
L’Australia è anche caratterizzata da un rovente dibattito attorno alle cosiddette “politiche climatiche”. Vanta, infatti, il primato delle più alte emissioni pro-capite, tra le nazioni OCSE, e quello di un mix energetico fortemente sbilanciato verso il carbone, un’abbondante risorsa interna.
Il Governo australiano ha recentemente approvato l’abrogazione di una tassa sul carbonio che era stata introdotta appena tre anni fa. L’eco-tassa era pagata dalle grandi aziende emettitrici di CO2 (in particolare le aziende estrattive ed i produttori di elettricità); ma, con una semplice partita di giro, i costi venivano fatti ricadere sui consumatori finali.
Cancellata la
carbon tax, il mercato dei permessi di emissione – che avrebbe dovuto entrare in vigore nel 2014, ed integrarsi entro il 2018 con quello europeo per gli scambi ETS – ha chiuso i battenti prima ancora di aprirli.
A lato di questa vicenda ed in concomitanza con la conferenza di Lima sul clima, lo scorso dicembre è apparso e si è diffuso su internet un particolare appello rivolto agli ambientalisti di tutto il mondo.
Gli autori di questa lettera aperta [1] sono due professori australiani: Barry W. Brook, Chair of Environmental Sustainability presso l’Università della Tasmania, e Corey J.A. Bradshaw, Sir Hubert Wilkins Chair of Climate Change presso l’Environment Institute dell’Università di Adelaide.
Il contenuto è molto stringato ed il messaggio è chiaro:
in qualità di scienziati conservazionisti, preoccupati per l’esaurimento a livello globale della biodiversità ed il conseguente degrado del sistema su cui si regge la vita umana, noi sosteniamo le conclusioni tratte nell’articolo ‘Key role for nuclear energy in global biodiversity conservation’ [Ruolo chiave dell’energia nucleare nella conservazione della biodiversità a livello globale. (N.d.R.)], pubblicato su Conservation Biology (Brook & Bradshaw, 2014).” [2]

27Fig.2: Densità di energia a confronto per diversi combustibili: a) uranio, b) gas naturale compresso (i.e. GNC o, in inglese, CNG), c) carbone, e d) nichel-metallo idruro (i.e. NiMH, materiale presente negli accumulatori standard utilizzati nei veicoli elettrici). Nella figura sono riportate le quantità necessarie per fornire o immagazzinare circa 220 kWh/gg di energia elettrica equivalente per 80 anni (abbastanza per soddisfare tutte le esigenze per tutta la vita di un cittadino del mondo sviluppato – per quanto riguarda illuminazione, calore, trasporti, produzione alimentare, manifattura varia, ecc.). Il totale dell’energia elettrica incorporata risulta essere pari a 6.4 mln di kWh. Ne conseguono diversi rapporti massa-volume: per l’uranio 780 g o 40.7 cm3 (dimensioni di una pallina da golf); per il GNC 56 autobotti da 20.000 litri; per il carbone 3.200 t o 4.000 m3 (circa l’equivalente di 800 elefanti); per le batterie 86.000 tonnellate di NiMH (in pratica l’equivalente di una batteria con dimensioni impressionanti: grossomodo alta quanto 16 Burj Khalifa impilati [3]). Dati e calcoli di Barry W. Brook e Corey J. A. Bradshaw (Conservation Biology, 9 dicembre 2014, DOI: 10.1111/cobi.12433). La fonte è liberamente consultabile qui.

In pratica, si tratta di un appello a seguire le strade più efficaci per garantire la sopravvivenza del Pianeta, con particolare riferimento alla preservazione dell’ambiente e della biodiversità. E quali sarebbero queste strade? La drastica riduzione dei consumi di energia di origine fossile (gas, petrolio e soprattutto carbone) accompagnata dal ricorso alle fonti rinnovabili (eolico e solare, in particolare) e… all’energia nucleare.
Il motivo di questa “inconsueta” accoppiata è molto semplice – sostengono i firmatari, e non sono i soli invero. Le energie rinnovabili richiedono, infatti, grandi estensioni di territorio, che non si vogliono sottrarre all’agricoltura e a ciò che resta dell’ambiente naturale. Inoltre, sono di norma intermittenti ed aleatorie. Di sicuro difficilmente programmabili, se non con sistemi che attualmente non sono disponibili nelle dimensioni opportune “per fare la differenza”. Esse devono, dunque, essere integrate con una fonte che sia in grado di produrre energia con continuità, e che al contempo richieda spazi molto limitati. Questo avveniva ed avviene già con le vecchie centrali alimentate da combustibili fossili, che ora, però, vanno dismesse a causa delle loro emissioni, che contribuiscono all’inquinamento ed all’aumento dei gas serra. Pertanto, Brook, Bradshaw e “soci” sostengono che, se vogliamo avere qualche possibilità di mitigare i cambiamenti climatici ed evitare gravi conseguenze, il nucleare deve ricoprire questo ruolo in modo preponderante (se non esclusivo).
E le scorie radioattive? Beh, questo non sarà più un problema con i reattori avanzati di nuova generazione, che funzionano a ciclo chiuso, senza cioè produrre materiali radioattivi da immagazzinare in depositi a lungo termine.
E il rischio di incidenti? Varie analisi comparative svolte sulle diverse fonti di energia concordano sul fatto che il nucleare è fra le meno pericolose in termini di vittime per unità di energia prodotta.
Questo il succo. Per maggiori dettagli vi invitiamo a leggere per intero l’articolo di Brook e Bradshaw al link dove è consultabile e scaricabile gratuitamente insieme ai dati ed ai fogli di calcolo a supporto delle loro conclusioni. Se siete interessati, ma non avete tempo, non disperate; perché è molto probabile che attingeremo da quella fonte tornando sull’argomento più volte nei prossimi mesi.
Qui di seguito vi proponiamo subito, invece, alcune nostre considerazioni “a caldo”.
Come si può notare, non ci sono ingegneri o fisici fra i 75 firmatari della lettera (al 23/01/2015). I firmatari sono tutti biologi, naturalisti ed ecologi dei principali Paesi del mondo. E, a dire il vero, sostanzialmente la “chiamata alle armi” si rivolge direttamente a loro.
Inoltre, la lettera non costituisce una novità in senso assoluto. Qualche tempo fa si erano, infatti, mossi anche alcuni climatologi di fama mondiale, come si può leggere qui.
Quello che sinceramente ci ha più colpito è, dunque, un fatto che si può osservare solo cercando a fondo nell’
humus in cui è nata e su cui si sta sviluppando l’intera questione. Perché sembra proprio che l’Australia si stia già muovendo, a piccoli passi, nella direzione indicata dall’appello.
Nel mese di agosto 2014, per esempio, è uscito a cura dell’
Australian Academy of Technological Sciences and Engineering (ATSE) un interessante report, o meglio “piano di azione”, che si può consultare qui.
Vale la pena, quindi, scrutare per bene il panorama industriale australiano.
L’economia australiana costituisce un caso unico nell’OCSE, dato che il 20% del PIL è rappresentato dalle attività estrattive minerarie e dai relativi servizi (dati del 2012, fonte WNA). L’uranio ha una piccola parte in tutto questo, in termini economici, ma in termini energetici costituisce un quarto delle esportazioni (e.g. 3944 peta-joule, ossia milioni di miliardi di joule, nel 2012-13).

28aa) andamento produzione
28a b) andamento esportazioni
29 c) variazioni biennali
Fig.3: Estrazione ed esportazione di uranio in Australia. I dati rappresentati si riferiscono sia alle quantità di uranio puro (“U” indica genericamente tutti gli isotopi dell’uranio) sia a quelle di octaossido di triuranio (U3O8 – ossido di uranio presente in natura nel minerale pechblenda). Elaborazioni CN&R, dati WNA.

L’uranio in Australia viene estratto dal 1954. Laggiù le risorse di uranio ad oggi note sono le più grandi al mondo – il 31% del totale mondiale; ma l’Australia è “solo” il terzo produttore al mondo, dietro il Kazakistan ed il Canada, e tutta la produzione viene esportata.

30Fig.4

A ben vedere l’Australia avrebbe già pronta un’infrastruttura significativa per supportare qualsiasi futuro programma nucleare. Si possono citare, ad esempio, l’Australian Nuclear Science & Technology Organisation (ANSTO), che possiede e gestisce Opal, un moderno reattore di ricerca da 20 MWth, l’Australian Safeguards & Non-proliferation Office (ASNO), che fornisce linee guida e disposizioni concernenti la sicurezza e la salvaguardia della salute apprezzate a livello internazionale per la loro alta qualità, l’Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), ed ovviamente tutta l’industria mineraria dell’uranio con il suo indotto.
Tuttavia, se a guidare la svolta nucleare rimarrà principalmente la riduzione delle emissioni di CO
2, o gli eventuali costi derivanti da tali emissioni, il rischio che l’intero programma evapori come la rugiada al Sole d’estate è tutt’altro che trascurabile. Grazie ai bassi costi, infatti, le ingenti risorse nazionali di carbone, alle quali si aggiungono quantità significative di gas naturale, fanno la parte del leone nella strategia energetica del Paese. Vale a dire: a volte basta un ruggito.
O meglio, la strada non è certo spianata. Difatti, la scelta nucleare è per esempio ostacolata anche da specifiche normative emanate in alcuni Stati, come il Victoria ed il Queensland, che vietano la costruzione o la gestione di qualsiasi reattore nucleare.
In conclusione, non vorremmo certo alimentare strane illusioni su repentini cambiamenti del business as usual [4]; ma qualcosa si sta muovendo laggiù, e forse questo qualcosa sarà di aiuto anche altrove.

Note

[1] Se ne è parlato anche su bravenewclimate.com riportando quanto pubblicato su conservationbytes.com, il blog di Bradshaw.

[2] Alcune parti dell’articolo sono riportate in un altro post di bravenewclimate.com.

[3] Il pavimento di un ascensore standard ha una superficie di circa 2.6 m2 (ASME 17.1 Elevator Safety Code), mentre l’albero di servizio del super-grattacielo Burj Khalifa è alto 540 m, da cui un volume di 1326 m3. Rapportando questo volume con quello di una batteria NiHM in grado di fornire la stessa energia di una massa di Pu-239 delle dimensioni di una pallina da golf, si ottiene un valore pari a 16.2. Prendendo come riferimento il Burj Khalifa, si calcola un’altezza di 13.4 km: 16.2 volte quella del Burj Khalifa. Per ulteriori approfondimenti si consulti online l’articolo di Barry W. Brook e Corey J. A. Bradshaw, alla voce ‘Supporting Information’.

[4] ‘Business as Usual’ è anche il titolo del primo album dei Men at Work (pubblicato nel 1981 e di grande successo, grazie soprattutto al singolo ‘Down Under’); qui, però, si vuole intendere in senso lato il modo in cui sino ad oggi sono andate le cose, nel campo dell’industria come in quello della politica, in Australia, ma anche nel resto del Mondo.

Ringraziamenti

Il presente post è frutto di una dritta del prof. Giovanni Vittorio Pallottino, al quale siamo grati anche per averci fornito un agile sunto dei post apparsi su Brave New Climate. Abbiamo mescolato il tutto con alcune sue osservazioni, alcune nostre osservazioni e qualche spunto di riflessione.

Ringraziamo, infine, il prof. Barry W. Brook per averci dato il suo consenso a pubblicare (sulla base dei termini della licenza Creative Commons Attribution) una delle figure contenute nell’articoloKey role for nuclear energy in global biodiversity conservation(Conservation Biology, 9 dicembre 2014, DOI: 10.1111/cobi.12433) e relativa didascalia.