Passi avanti per il nucleare del futuro

Ripubblichiamo due articoli dedicati ai recenti sviluppi nei progetti di ricerca per la realizzazione di una nuova generazione di reattori nucleari da fissione.
Gli articoli originali sono disponibili qui e qui.


Terrapower ci riprova: progetto NATRIUM

Terrapower, l’azienda creata da Bill Gates con lo scopo di fornire soluzioni avanzate al problema del riscaldamento globale, ha appena rivelato un nuovo progetto basato sul nucleare.
Secondo quanto descritto sul sito e dai principali media USA (ad esempio Reuters e NYT), la compagnia, in team con GE-Hitachi, vuole proporre un SMR che, dalle info rilasciate, sembrerebbe basato sulla tecnologia del PRISM di General Electric. Quindi un reattore veloce raffreddato a sodio liquido (da cui il nome NATRIUM), scalata ad una potenza di 345 MWe.
PRISM è un reattore di 4° generazione, dotato di sicurezza intrinseca, alimentato da combustibile metallico invece che ossido, come nei convenzionali reattori PWR/BWR. E’ quindi capace di riciclare combustibile usato e funzionare da “burner” per ridurre la quantità di “rifiuti” della filiera.
La particolarità del progetto sarebbe nell’accoppiata con un sistema di storage termico a sali fusi. Questo lo renderebbe particolarmente interessante in un ecosistema nel quale sia presente una quota elevata di fonti intermittenti.
I nostri lettori ricorderanno che questa caratteristica è ad esempio presente anche nel progetto MOLTEX.
Seguiremo questo progetto e vi terremo informati degli sviluppi, sperando abbia maggior fortuna dello sfortunato TWR.

NuScale al traguardo della certificazione del design, ma la strada è ancora in salita

NuScale Power è la prima azienda, e per ora l’unica, ad ottenere da parte della Nuclear Regulatory Commission (NRC) statunitense la certificazione del proprio design di Small Modular Reactor. Tale certificazione, ottenuta al termine di un esame di tutte le specifiche di sicurezza del concetto di reattore proposto, ha durata di 15 anni (rinnovabile) e sostanzialmente apre le porte alla commercializzazione dei reattori modulari NuScale.

Il parere positivo ottenuto dall’Advisory Committee on Reactor Safeguards (ACRS) non è tuttavia senza ombre. In particolare è stato rilevato un possibile difetto nell’impianto di raffreddamento del nocciolo, nel quale acqua addizionata di boro circola più volte attraverso cicli di evaporazione e condensazione. Tuttavia, la fase di evaporazione priverebbe l’acqua del boro, riducendone la capacità di assorbire neutroni, dunque di interrompere la reazione a catena.

NuScale avrebbe già risolto questo potenziale problema, malgrado ciò l’ACRS ha chiesto un’ulteriore valutazione di questo meccanismo di sicurezza e del rischio connesso all’immissione accidentale nel circuito di acqua priva o povera di boro, richiesta fatta propria dalla NRC.

Tali approfondimenti saranno dunque oggetto d’esame al momento della richiesta di licenza operativa per uno o più reattori NuScale.

L’importante traguardo della certificazione del design è ulteriormente offuscato dai tentennamenti del primo cliente annunciato di NuScale, la Utah Associated Municipal Power System (UAMPS): l’utility elettrica ha infatti in progetto la realizzazione di una centrale NuScale da 12 moduli di potenza complessiva pari a 720 MW la cui costruzione dovrebbe cominciare nel 2023, per essere operativa nel 2026. Tuttavia, citando l’aumento dei costi attesi e l’intervenuta contrarietà al progetto di alcune municipalità che aderiscono all’utility, UAMPS avrebbe espresso a NuScale l’intenzione di rimandare il progetto di 3 anni.

La posizione più cauta di UAMPS potrebbe essere dovuta anche ad una campagna stampa fortemente ostativa al progetto, montata da alcuni media locali anche ad opera di organizzazioni ambientaliste, come The Union of Concerned Scientists e Uranium Watch, da sempre su posizioni critiche o del tutto contrarie al nucleare.

Gli sforzi di NuScale per far percepire i reattori modulari intrinsecamente sicuri, tanto da postulare la riduzione quasi a zero dell’attuale area di emergenza (di 32 km di diametro) prevista per la loro installazione, non sembrano per ora aver fatto presa, almeno nel pubblico.

Secondo i detrattori, il design che ha ottenuto la certificazione prevede moduli di potenza pari a 50 MW ciascuno, mentre la centrale dello Utah vedrebbe moduli di 60 MW di potenza, che dunque richiederebbero una nuova valutazione. Dal canto suo NuScale replica che l’aumento di potenza del 20% ricade negli ampi margini di sicurezza del design e non ha implicazioni di sicurezza rilevanti. Inoltre la licenza dello specifico impianto avverrebbe in seguito ad un altro esame approfondito da parte della NRC, come da prassi.

Sul fronte dei costi, a chi obietta che il progetto sia troppo costoso per una utility privata, UAMPS risponde che i costi previsti sono pari a 55 $ al MWh, competitivi quindi con altre fonti di produzione elettrica, quali il gas naturale e le rinnovabili.

Come abbiamo già avuto modo di sottolineare in un precedente articolo sui reattori modulari, molta della fortuna di questi progetti dipenderà però non soltanto dalla loro capacità di mantenere le promesse, ma anche dall’apertura mentale degli organismi regolatori e dalla loro capacità di evolvere al pari della tecnologia e, per quanto riguarda la riduzione dei tempi e dei costi di costruzione, dalla capacità di armonizzare a livello internazionale i requisiti normativi.

Rendering di un modulo di potenza NuScale (foto NuScale via World Nuclear News)

Dagli Small Modular Reactors l’impulso al futuro del nucleare

Reattori modulari?
L’Associazione Italiana Nucleare
fa il punto in questo articolo,
che ripubblichiamo integralmente.

Cresce l’interesse per i reattori modulari di piccola taglia (SMR) e con esso le probabilità che la produzione di energia da fonte nucleare possa ritrovare impulso nel medio-lungo periodo. Sono decine i progetti, portati avanti da altrettante compagini industriali in tutto il mondo. Diverse sono anche le taglie, perché c’è piccolo e piccolo. Si va dai microreattori, ad esempio Westinghouse Evinci (0.6 MWt) e Oklo Aurora (1.5 MWt), alle taglie intermedie come Nuscale (160 MWt) e KLT-40S di Afrikantov OKBM (150 MWt), fino alle taglie “forti” quali l’IMSR di Terrestrial Energy (400 MWt)1. Molteplici anche le destinazioni d’uso: produzione di calore, elettricità o entrambe, connessi alla rete o no, in quest’ultimo caso per servire comunità isolate o basi militari.

I punti di forza comuni sono, seppur con diverse sfumature e per molti progetti ancora da dimostrare, la riduzione dei costi, la maggior flessibilità (load following) anche in una rete dove abbondino le rinnovabili intermittenti e caratteristiche di sicurezza intrinseche senza precedenti.

L’idea di fondo non è nuova, dal momento che reattori di piccola taglia si trovano a bordo delle imbarcazioni a propulsione nucleare. Ciò che alcuni di questi progetti promettono, e l’innovazione principale sta qui, è di rivoluzionare il processo di costruzione, spostandolo dal sito alla fabbrica, dove i reattori modulari verrebbero prodotti in massa e con caratteristiche standard, con conseguente riduzione dei tempi e dei costi. Inoltre, la riduzione della taglia e la presenza di misure di sicurezza intrinseche (ovvero senza la necessità d’intervento umano o di alimentazione esterna), potrebbero potenzialmente rivoluzionare la regolamentazione, ad esempio riducendo o addirittura eliminando le zone di sicurezza intorno alle centrali, consentendone la costruzione ad esempio in aree industriali o comunque urbanizzate (ciò in definitiva dipenderà soprattutto dagli enti regolatori).

Alcuni di questi reattori sono già operativi, altri in costruzione, mentre altri ancora sono ancora in fase di studio, ma potrebbero essere connessi per la prima volta alla rete entro i prossimi 5-6 anni.

Il KLT-40S di Afrikantov OKBM ad esempio è già operativo. Ha preso il nome di centrale Akademik Lomonosovconnessa alla rete il 19 dicembre 20192 nella remota regione di Chukotka, in Siberia. Si tratta della versione modificata del KLT-40 originariamente pensato per propellere la flotta di rompighiaccio russi. Si tratta quindi di una centrale galleggiante, che può produrre elettricità e calore per una potenza complessiva di 70 MWe per 26000 ore continuative senza rifornimento di combustibile. La Akademik Lomonosov sostituisce il reattore numero 1 della centrale di Bilibino (LWGR) nel servire la locale comunità mineraria.

02
La centrale Akademik Lomonosov (foto Rosatom)3.

CAREM è un progetto argentino attualmente in costruzione4. Si tratta di un reattore ad acqua leggera (LWR) di potenza nominale pari a 100 MWt e pensato per servire regioni con scarsa domanda di elettricità oppure per la desalinizzazione dell’acqua marina. Le sue caratteristiche di sicurezza annoverano sistemi totalmente passivi e raffreddamento del nocciolo a circolazione naturale, oltre ad una significativa semplificazione del design e riduzione degli elementi sensibili. Il primo prototipo potrebbe essere operativo nel 2022, fatti salvi ulteriori ritardi nei lavori dovuti alla situazione economica e politica in Argentina.

DCIM100MEDIADJI_0053.JPG
Il sito di costruzione del reattore CAREM, in Argentina (foto Wikipedia).

Un altro progetto ormai vicinissimo alla fase operativa commerciale è il cinese HTR-PM. Si tratta di un reattore ad ala temperatura raffreddato a gas della potenza nominale di 250 MWt. Ogni modulo è composto di due reattori. La versione di test (HTR-10) è operativa dal 2003 ed ha dimostrato molte caratteristiche di sicurezza tipiche dei reattori modulari. La centrale commerciale è in costruzione dal 2013 a Rongcheng, nella provincia di Shandong, dove si prevede l’installazione di 10 moduli. Gran parte dei lavori sono ultimati5 e la centrale dovrebbe divenire presto operativa.

04
Il recipiente del nocciolo HTR arriva alla centrale di Rongcheng (foto CHNG via World Nuclear News)5.

Tra i reattori in fase di sviluppo forse uno dei più promettenti è quello progettato dall’americana Nuscale Power. Reattori modulari capaci di produrre elettricità o calore pari a 50 MWe ciascuno, da assemblare in numero variabile, fino a 12 unità, in base alle esigenze del cliente. Si tratta di reattori ad acqua pressurizzata (PWR) interamente assemblati in fabbrica con raffreddamento a circolazione naturale in tutti gli stati operativi e capacità di raffreddarsi autonomamente senza apporto di energia elettrica dall’esterno e senza necessità d’intervento umano in caso di incidente o di apporto d’acqua. Analisi probabilistiche mostrano che il livello di sicurezza sarebbe di un ordine di grandezza superiore alle centrali esistenti. Anche l’impronta ecologica sarebbe molto limitata, la centrale infatti occuperebbe circa 0.14 km2, un decimo delle già compatte centrali nucleari tradizionali. Ogni modulo è operato indipendentemente dagli altri, aumentando la flessibilità di potenza erogata ed eliminando i tempi morti necessari al rifornimento del combustibile.

L’SMR di NuScale è alla seconda fase di autorizzazione normativa. La prima centrale commerciale dovrebbe essere condotta a partire dal 2026 nell’Idaho dalla Utah Associated Municipal Power Systems. Molti Paesi, tra cui Ucraina, Romania, Giordania, Canada e Repubblica Ceca hanno firmato accordi6 con NuScale per esplorare lo sviluppo di SMR nei rispettivi territori.

01
Come sarà una centrale SMR Nuscale (foto Nuscale)6.

Questa incompleta panoramica dello stato di sviluppo dei reattori modulari ha l’intento primario di evidenziare come una rivoluzione dell’industria nucleare per la produzione di energia potrebbe essere alle porte, aprendo scenari completamente nuovi per quanto riguarda l’accettazione pubblica di questa tecnologia spesso incompresa dalle masse e stereotipizzata dai media mainstream.

Molta della fortuna di questi progetti dipenderà però non soltanto dalla loro capacità di mantenere le promesse, ma anche dall’apertura mentale degli organismi regolatori e dalla loro capacità di evolvere al pari della tecnologia. Per quanto riguarda la riduzione dei tempi e dei costi di costruzione degli SMR, molto dipenderà dalla capacità di armonizzare a livello internazionale i requisiti normativi, come auspicato recentemente7 dalla Presidente della Canadian Nuclear Safety CommissionRumina Velshi.

Per approfondire:

IAEA, Advances In Small Modular Reactor Technology Developments, 2018 Ed.

https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/small-nuclear-power-reactors.aspx

Note:

1] Esempi di microreattori
Evinci: https://www.westinghousenuclear.com/new-plants/evinci-micro-reactor
Oklo Aurora: https://oklo.com/
Nuscale https://www.nuscalepower.com/
Afrikantov OKBM: http://www.okbm.nnov.ru/en/
Terrestrial Energy: https://www.terrestrialenergy.com/

2] Connessione alla rete della centrale Akademik Lomonosov https://www.world-nuclear-news.org/Articles/Russia-connects-floating-plant-to-grid

3] https://www.maritime-executive.com/editorials/russia-s-floating-nuclear-plant-plugged-in-at-pevek

4] CAREM 25
https://www.argentina.gob.ar/produccion/energia/electrica/nuclear/carem

5] Processo d’installazione della Centrale di Rongcheng
https://www.world-nuclear-news.org/NN-Reactor-vessel-delivered-for-Chinas-first-HTR-1503164.html

6] Valutazione per NuScale SMR in Ucraina
https://world-nuclear-news.org/Articles/MoU-starts-evaluation-of-NuScale-SMR-for-Ukraine

7] Requisiti normativi per SMR
https://www.world-nuclear-news.org/Articles/Speech-Regulatory-harmonisation-for-SMRs