Radioattività e verità percepita

Cosa sta succedendo a Fukushima? Ne abbiamo lette e sentite di tutti i colori negli ultimi giorni!

Facciamo chiarezza:

  • Sì, TEPCO ha davvero rilevato livelli di radioattività molto alti all’interno dell’edificio del reattore n. 2 della centrale nucleare Fukushima Daiichi.

  • No, questo non significa che i livelli di radioattività nella centrale nucleare Fukushima Daiichi stanno aumentando.

Il 30 gennaio 2017 è stato inserito per la prima volta attraverso un’apertura esistente nel contenimento del reattore dell’unità 2 un attrezzo telescopico con una fotocamera, utilizzata anche come dispositivo per la misurazione della radioattività. L’apparecchiatura ha raggiunto un’area denominata “il piedistallo” (vicino al Control Rod Drive, parte inferiore del sistema delle barre di controllo ⎼ vedi Fig. 1), per effettuare misure e scattare foto proprio sotto il recipiente a pressione del reattore (Reactor Pressure Vessel ⎼ RPV) danneggiato. Le foto mostrano l’area con strutture a grigliato ricoperte di materiale fuso che si ritiene possa essere composto anche da detriti del combustibile nucleare fuoriusciti a seguito del fallimento del recipiente (vedi link nelle note).

01
Fig. 1 Immagine della zona investigata, per gentile concessione della TEPCO. La manovra è partita dall’apertura X-6 del contenimento del reattore (Primary Containment

Vessel ⎼ PCV)

 

02
Fig. 2 Rappresentazione della manovra effettuata con il braccio telescopico (in giallo), per gentile concessione della TEPCO

I livelli di radioattività rilevati sono stati riportati in sievert all’ora (“fino a 530 Sv/h” [1]) suscitando preoccupazione (ed allarmismo), ma anche forti perplessità, in quanto l’unità di misura sievert viene tipicamente utilizzata in misure di dose equivalente (o dose efficace), laddove si studiano la quantità di radiazioni ionizzanti assorbite e gli effetti sanitari delle medesime [2].

Gioco facile, quindi, per i mezzi di comunicazione e gli utenti dei social network affermare e rilanciare in tutto il Mondo che 530 sievert all’ora sarebbero fatali per una persona esposta solo per pochi secondi!

Sta di fatto che nessuna persona è stata esposta né ha assorbito alcunché, che la zona indagata è al momento inaccessibile se non con strumentazione manovrata da remoto, e soprattutto che le barriere interposte tra la sorgente radioattiva e l’ambiente esterno sono attualmente più che sufficienti per considerare la situazione sotto controllo, ovvero a bassissimo rischio di contaminazione o (peggio) di impatti per la salute dei lavoratori che operano per mantenere in sicurezza l’intera zona della centrale incidentata.

Riguardo a quest’ultimo punto, secondo la Safecast [3], associazione che monitora il sito in modo indipendente dalla TEPCO, le misure nei pressi della centrale (ed altrove in Giappone – vedi Pointcast realtime detector system) mostrano livelli di radioattività in costante diminuzione.

Inoltre, se non erano ancora stati misurati livelli di radioattività così alti a Fukushima Daiichi è per il semplice motivo che la strumentazione adatta non era mai stata posta alla giusta distanza da una sorgente radioattiva a così alta attività, principalmente a causa delle difficoltà ad accedere con tale strumentazione alle zone più pericolose. È difatti del tutto pacifico che in prossimità di un reattore nucleare incidentato, il cui contenimento probabilmente ha fallito, ci si debba aspettare livelli di radioattività estremamente alti. Non è affatto pacifico che si paragonino tali livelli a quelli associati alle normali condizioni di vita degli esseri umani, o al fondo di radioattività naturale, o alla medicina nucleare, e nemmeno alle condizioni di operatività dei lavoratori esposti.

Sono comprensibili un certo livello di confusione e di difficoltà ad interpretare fatti e dati da parte dei media, unito ad una (forse) inevitabile foga per la ricerca dello scoop, dei click, ecc. Viceversa lascia allibiti la faciloneria con cui si pubblicano scempiaggini come quella dell’Uranio che, fuoriuscito dal nocciolo del reattore, “scioglie” (sic!) qualsiasi cosa incontri sulla sua strada, come scrive il Corriere della Sera [4]. Per non parlare della ridicolaggine del citare fonti che vogliono rimanere anonime e quindi inverificabili, del fare allusioni ed ipotesi immotivate, ecc. ⎼ come un qualsiasi sito internet di fake news.

03
Fig.3 Immagine dal report IRID-TEPCO dove sono indicati i punti nei quali sono stati “misurati” gli alti valori di radioattività. Non si tratta di misure dirette tramite rivelatore di radiazione, ma di stime calcolate analizzando lo sfarfallio (flicker) delle immagini registrate con la fotocamera.
Si noti l’indicazione di un errore associato alle stime pari al 30%. Si noti inoltre che il valore più alto (i famosi 530 Sv/h) è stato rilevato dentro al contenimento del reattore (PCV), ma a qualche metro di distanza dal recipiente in pressione (RPV) e dal sistema delle barre di controllo (CRD), dove invece sono state catturate le immagini che sembrano individuare la presenza di combustibile nucleare fuso. 

Investigazioni simili sono in programma anche per le unità 1 e 3 della centrale nucleare. Pertanto aspettiamoci ulteriori sviluppi, vale a dire report con valori di radioattività anche più alti, ma soprattutto tante altre perle di giornalismo.

Sotto il consorzio denominato IRID, la TEPCO sta sviluppando con alcuni partner la tecnologia necessaria per approfondire gli studi delle aree considerate più critiche all’interno degli edifici dei reattori danneggiati. Robot ed altri dispositivi aiuteranno le indagini ovunque i livelli di radioattività sono troppo elevati per consentire agli esseri umani di operare in sicurezza o semplicemente nelle zone altrimenti inaccessibili.

L’operazione appena completata aveva proprio lo scopo di aiutare a mappare il percorso per Scorpion, un robot cingolato progettato per “strisciare” sul deck (ponte) di grigliato all’interno del “piedistallo”, e da lì raccogliere ulteriori immagini e fare misurazioni. Tuttavia, si è scoperto che una sezione del ponte risulta fusa e quindi molto probabilmente impraticabile per il robot. Inoltre, gli alti livelli di radiazione impongono limiti al tempo di durata delle eventuali operazioni: i livelli sono tali per cui dopo 2 ore potrebbero insorgere malfunzionamenti (più che altro legati al danneggiamento della parte elettronica della macchina [5]).

04
Fig. 4 Il robot SCORPION. Foto per gentile concessione della IRID

I tecnici avevano pazientato un anno, affinché fosse decontaminata in modo adeguato l’area dove gli operatori hanno manovrato da remoto, e venissero affrontate altre priorità. Ora si è scoperto che occorrerà probabilmente molto più tempo per inquadrare definitivamente il problema dei detriti del combustibile nucleare (più o meno esausto e/o fuso).

Sapevamo già che sarebbero occorsi decenni per provvedere ad un adeguato smantellamento di Fukushima Daiichi, oggi sappiamo che TEPCO ha, se possibile, ancora più problemi.

Rimaniamo tuttavia fiduciosi, e riteniamo che i progressi fatti negli anni sono comunque notevoli e tali per cui sarebbe ora che giungessero messaggi più tranquillizzanti dai media, soprattutto per quella popolazione giapponese che ancora soffre essendo stata costretta a lasciare le proprie case e le proprie vite.

Note:
[1] Questo il valore che abbiamo letto un po’ dappertutto, sul The Japan Times, Mainichi, Forbes, Corriere della Sera, ecc. Non abbiamo trovato altro riscontro ufficiale se non nel report della TEPCO (in giapponese) linkato qui sotto tra le altre fonti. In tale documento si legge che i valori sono frutto di una stima calcolata utilizzando il rumore della fotocamera causato dall’interazione delle radiazioni con l’apparecchio. Questo tipo di calcolo può facilmente dare risultati solo parzialmente affidabili, ossia poco significativi, con errori associati molto grandi, soprattutto se non viene fatta una campionatura estesa. In altre parole, il valore di 530 Sv/h potrebbe essere una semplice anomalia. Il sospetto è accresciuto dalla posizione del rilevamento, a grande distanza (qualche metro) da quello che nelle foto
sembra essere combustibile nucleare fuoriuscito dal nocciolo a seguito del fallimento del recipiente del reattore ⎼ ribadiamo, sembra essere, perché al momento non esiste alcuna conferma definitiva che si tratti di combustibile nucleare.

[2] Un’utile spiegazione delle differenti unità di misura usate con le radiazioni ionizzanti viene fornita dalla United States Nuclear Regulatory Commission qui:

https://www.nrc.gov/about-nrc/radiation/health-effects/measuring-radiation.html

[3] Safecast è un’associazione di volontariato internazionale, dedita al monitoraggio della situazione post-incidentale a Fukushima Daiichi, allo studio della conseguente contaminazione radioattiva dell’ambiente, ed alla divulgazione di una corretta informazione scientifica sui problemi ambientali e di salute pubblica ad essa collegati.

[4] Buona (?) lettura:

http://www.corriere.it/esteri/17_febbraio_05/fukushima-foro-che-dimostra-fusione-nocciolo-d-uranio-0e5492e6-ebe6-11e6-91eb-31433eb4de41.shtml

05
Screenshot del 06/02/2017 ore 14:11

[5] I diodi, ma anche altri componenti elettronici, possono resistere, ossia continuare a funzionare, solo fino a certe fluenze (i.e. numero di particelle incidenti sull’unità di superficie di un corpo irraggiato) e a seconda del tipo di particelle e delle relative energie associate.

Fonti ed ulteriori approfondimenti:
Alcuni report della TEPCO

http://www.tepco.co.jp/en/nu/fukushima-np/handouts/2017/images/handouts_170202_01-e.pdf

http://www.tepco.co.jp/en/press/corp-com/release/2017/1371751_10469.html

http://www.tepco.co.jp/nu/fukushima-np/handouts/2017/images1/handouts_170206_05-j.pdf

Alcune foto della TEPCO

http://photo.tepco.co.jp/en/index-e.html

http://photo.tepco.co.jp/en/date/2017/201702-e/170202-01e.html

http://photo.tepco.co.jp/en/date/2017/201701-e/170130-01e.html

Ringraziamenti:
Questo post è frutto di alcune nostre considerazioni a margine di tre articoli che hanno cercato di portare un po’ di corretta informazione nel delirio mediatico internazionale. Il primo è l’articolo pubblicato da
Safecast il 4 febbraio 2017 e da noi ripubblicato integralmente qui:

https://nucleareeragione.org/2017/02/08/no-radiation-levels-at-fukushima-daiichi-are-not-rising/

Il secondo è l’articolo “No, Fukushima Daiichi Did Not See A Radiation Spike” di SimplyInfo.org e Fukuleaks.org, pubblicato il 4 febbraio 2017.

Il terzo è l’articolo “Fukushima Unit 2 New Radiation Readings From TEPCO” di SimplyInfo.org e Fukuleaks.org, pubblicato il 6 febbraio 2017.

Attenzione al caminetto!

Sta suscitando molto scalpore la notizia, riportata anche dalla stampa italiana (per esempio qui, qui e qui), del “livello record” di radiazioni rilevate all’interno di uno dei reattori della centrale di Fukushima, danneggiati dal sisma del 2011.
Ci riserviamo di verificare la correttezza dei dati pubblicati (530 sievert/ora all’interno del contenimento del reattore numero 2, dove si trova il sistema delle barre di controllo sotto il nocciolo), limitandoci per ora ad osservare come il tono sensazionalistico utilizzato dagli organi di stampa contribuisca a distorcere o aumentare la percezione di pericolosità associata alle delicate operazioni in atto per mettere in sicurezza il sito nucleare giapponese.

E’ di fatto del tutto prevedibile che all’interno del reattore stesso, là dove il combustibile si è depositato (essendo avvenuta la fusione del nocciolo per mancato raffreddamento), le radiazioni siano molto elevate. Questo è vero anche in una centrale nucleare normalmente in funzione e non danneggiata, dove è evidente che se una persona si introducesse all’interno del nocciolo del reattore, verrebbe esposta a dosi letali, ma nessuno si sognerebbe di comunicare questo dato come se ciò fosse un’eventualità in qualche modo plausibile.
Tradurre una misura di radioattività in un valore di dose assorbita da una persona, è di fatto in questo contesto un puro esercizio accademico, e come tale andrebbe specificato [1].

Queste precisazioni non vogliono essere una minimizzazione della delicatezza tecnica delle operazioni di bonifica dell’area della centrale di Fukushima Daiichi, ma è importante che i lettori siano consapevoli che tali operazioni sono condotte con mezzi meccanici e pertanto garantendo l’incolumità fisica dei tecnici coinvolti [2].

Nell’immagine qui sotto, un caminetto acceso, riportato per analogia. L’esposizione diretta e prolungata alla fiamma (nocciolo del reattore) potrebbe causare danni irreparabili, ma “fortunatamente”, mantenendosi alla giusta distanza e/o interponendo le appropriate barriere protettive (difesa in profondità), nessuno si brucerà, e si potrà godere del caldo tepore che il caminetto genera in sicurezza.

caminetto

[1] Per capire la differenza, consultare qui: https://www.nrc.gov/about-nrc/radiation/health-effects/measuring-radiation.html.Molto utile anche il nostro approfondimento sulla radioattività: https://nucleareeragione.org/risposte-veloci/

[2] In queste ore ne stiamo leggendo davvero di tutti i colori. Sinceramente, vorremmo sorvolare sugli strafalcioni tecnici, le inesattezze e i maliziosi bisticci sintattici, ma torneremo a parlarne.
Ad ogni modo, i pezzi “peggiori” sono già stati segnalati e documentati sul JPQuake Wall of Shame:
wall_of_shame

 

Un nuovo coperchio per Chernobyl

[27 novembre 2016, 30 anni e 7 mesi dopo il terribile incidente, ecco il Nuovo Confinamento Sicuro]

025

Abbastanza alto da poter ospitare la cattedrale di Notre Dame de Paris, ora copre e sigilla ulteriormente le rovine di Chernobyl, già sepolte nel famoso “sarcofago”. Il nuovo “coperchio” elimina i punti deboli di quello vecchio ed aumenta significativamente il livello di sicurezza delle aree adiacenti. Cambia inoltre radicalmente l’aspetto complessivo di uno dei siti più famosi al Mondo, ed è progettato per rimanere lì almeno 100 anni.

Un intero paesaggio ne è modificato per sempre. Era il paesaggio che ha fatto da sfondo a storie di dolore, angoscia, rabbia, abbandono, amarezza, ma che ha anche alimentato nel tempo paure esagerate o addirittura infondate, sentimenti contrastanti di rifiuto e curiosità, e purtroppo molte sterili polemiche. Potrà ora finalmente lasciare spazio ad altro nell’immaginario collettivo?

026

In 30 anni, dalle condizioni di lavoro estreme dell’emergenza iniziale si è passati ad una routine piuttosto insolita: non tutti gli abitanti della piccola cittadina omonima se ne sono andati; le altre unità della centrale nucleare hanno finito di essere disattivate solo ad inizio del nuovo millennio; tra enormi difficoltà e grandi speranze, migliaia di uomini e donne, con le più svariate specializzazioni, “liquidatori”, manovali, operai, tecnici, militari e scienziati hanno condiviso i medesimi spazi di lavoro, e continueranno a farlo.

Senza dimenticare chi ha perso la vita a causa dell’incidente catastrofico e chi ha pagato un prezzo intollerabile, forse è giunto davvero per tutti il momento di mettere le vecchie foto nel cassetto e guardare fiduciosi quelle nuove.

Tutto a posto così? No, il grosso del lavoro inizia adesso!

Il nuovo confinamento sicuro (New Safe Confinement – NSC) dell’unità 4 della centrale nucleare di Chernobyl è il frutto di un progetto senza precedenti nella storia della tecnica, denominato Shelter Implementation Plan (SIP).

Mai prima d’ora una struttura enorme era stata costruita in un sito fortemente contaminato.

027

Superare i rischi e le difficoltà inerenti il progetto ha richiesto anni di preparazione e di studio preliminare. I lavori al sito sono iniziati nel 2010 e dovrebbero essere completati al più tardi entro il 2017.

Per ridurre al minimo il rischio esposizione alle radiazioni dei lavoratori, è stato assemblato a qualche decina di metri di distanza dalla posizione definitiva, raggiunta scorrendo su appositi binari e spinto da enormi martinetti. La manovra di posizionamento ha richiesto alcuni giorni. Ora che è sopra l’edificio del reattore distrutto dall’esplosione del 29 aprile 1986, il nuovo “coperchio” impedisce la dispersione di materiale contaminato da radionuclidi ed allo stesso tempo protegge la struttura sottostante da danni esterni, dovuti per esempio a condizioni atmosferiche estreme.

028

Alta 108 metri, lunga 162 metri, con un’apertura di 257 metri la struttura ad arco pesa grossomodo 36.000 tonnellate ed è costituita da un reticolo di elementi tubolari in acciaio, sostenuto da travi longitudinali in cemento armato.

Fornirà un ambiente di lavoro sicuro, attrezzato con gru pesanti per il futuro smantellamento del vecchio sarcofago e la gestione dei rifiuti.

Sarà abbastanza forte da resistere ad un tornado ed il suo sofisticato sistema di ventilazione elimina il rischio di corrosione.

029

Progettazione e costruzione sono state assegnate nel 2007 al consorzio Novarka, guidato dalle imprese francesi Bouygues e Vinci.

Nel sito hanno lavorato e lavorano subappaltatori locali e altri provenienti da tutto il Mondo: gli elementi strutturali sono stati progettati e costruiti in Italia, le gru vengono dagli Stati Uniti, il rivestimento dalla Turchia, e le operazioni di sollevamento e di scorrimento sono state curate da una società olandese.

La costruzione è finanziata tramite il Chernobyl Shelter Fund, gestito dalla Banca Europea per la Ricostruzione e lo Sviluppo (European Bank for Reconstruction and Development – EBRD). I contratti assegnati sono in accordo con le politiche e le norme sugli appalti della BERS e le relative attività devono essere svolte in conformità alla sua policy ambientale e sociale.

Щире спасибі всім АЕС персоналу, техніків і робітників, що беруть участь в будівництві нового безпечного конфайнмента Чорнобильської АЕС.

Fonte:
BERS per i dati tecnici e commerciali; Wikipedia, Novarka e lo staff della centrale nucleare di Chernobyl per le foto.

Per ulteriori approfondimenti consigliamo il seguente video che riassume 8 anni di lavoro:


Le scorie dell’energia

Segnaliamo che mercoledì 20 gennaio, alle ore 17:00, avrà luogo a Trieste una conferenza dal titolo:
 “Le scorie dell’energia. Come chiudere il ciclo di una fonte?
Luogo: aula magna del Dipartimento di Scienze Giuridiche, del Linguaggio, dell’Interpretazione e della Traduzione, in via Filzi 14 a Trieste.
Relatore: dott. Pierluigi Totaro (Comitato Nucleare e Ragione).
Scorie_energia

L’evento fa parte di un ciclo di conferenze intitolato “Energia, società e ambiente. Tra passato, presente e futuro“, promosso dai Dipartimenti di Studi Umanistici e di Fisica dell’Università di Trieste, da Sissa Medialab, Elettra-Sincrotrone, Ceric-Eric, Comitato Nucleare e Ragione, Nuclear Italy Research Group.

Energia, società, ambiente_1

Lo stato di salute della popolazione residente nei comuni sedi di impianti nucleari

Riportiamo integralmente il seguente comunicato dell’Istituto Superiore di Sanità

Lo stato di salute della popolazione residente nei comuni sedi di impianti nucleari è generalmente sovrapponibile a quello della popolazione generale delle Regioni di appartenenza.

logo_iss

ISS 23 ottobre 2015

Sono queste le conclusioni, in linea con quelle ottenute in altri paesi europei, del primo rapporto italiano “Stato di salute della popolazione residente nei Comuni già sedi di impianti nucleari: Analisi della mortalità, stima dei casi attesi e rassegna degli altri studi epidemiologici”, commissionato dal Ministero della Salute all’Istituto Superiore di Sanità. Il rapporto è stato presentato a Roma, nel corso di una riunione della Conferenza Stato-Città.
La mortalità per molte delle patologie prese in esame è risultata inferiore rispetto alla popolazione regionale con cui è stata confrontata e gli eccessi di mortalità osservati non possono essere direttamente attribuibili all’esposizione della popolazione a dosi di radiazioni ionizzanti causate da rilasci di radioattività dagli impianti, in quanto (sulla base delle stime riportate in questo rapporto) le dosi che possono causare effetti osservabili in termini di incremento di mortalità avrebbero potuto essere prodotte solo da un continuo e rilevante funzionamento anomalo degli impianti.
Va sottolineato, infatti, che le patologie tumorali analizzate sono tutte multifattoriali, cioè vi sono diversi fattori (oltre all’esposizione a radiazioni ionizzanti) che possono aumentare il rischio di contrarre tali tumori.
Lo studio, avviato nel 2010, nell’ambito di un tavolo di coordinamento sulle attività di indagine epidemiologica nelle aree sede di servitù nucleari, ha valutato lo stato di salute della popolazione residente in nove comuni italiani già sedi di impianti nucleari e le eventuali azioni da intraprendere.
E’ stata analizzata la mortalità per 62 gruppi di patologie ma particolare attenzione è stata data a 24 patologie tumorali connesse (in modo non univoco) all’esposizione a radiazioni ionizzanti secondo quanto indicato dalla IARC (Agenzia Internazionale per la Ricerca sul Cancro), dall’UNSCEAR (Comitato Scientifico delle Nazioni Unite sugli Effetti delle Radiazioni Atomiche), dall’ICRP (Commissione Internazionale sulla Protezione Radiologica), e dal BEIR (Comitato sugli Effetti Biologici delle Radiazioni Ionizzanti).
Nell’intero periodo 1980-2008 la mortalità complessiva per l’insieme delle 24 patologie tumorali per le quali l’esposizione alle radiazioni ionizzanti sono uno dei fattori di rischio è risultata comunque non diversa da quella di riferimento nell’insieme dei Comuni analizzati. Per i singoli Comuni, la mortalità complessiva per l’insieme delle 24 patologie tumorali risulta lievemente in eccesso a Latina (+3%), ma in difetto per altri 3 Comuni e per l’insieme dei Comuni escluso Latina (-9%).
Le analisi complessive sull’insieme dei Comuni per ognuna delle suddette 24 patologie tumorali ha mostrato, per l’intero periodo 1980-2008, un eccesso di mortalità per il tumore alla tiroide e un difetto di mortalità per tumori al colon-retto, al polmone, alla mammella e all’esofago.
Va sottolineato che gli eccessi di mortalità osservati in qualche caso nelle popolazioni dei Comuni in esame non possono essere direttamente attribuibili, in base a questa sola analisi, alla presenza di impianti nucleari, in assenza di dati o indicatori di esposizione degli individui delle popolazioni in esame ai rilasci radioattivi dagli impianti stessi.
Non è stato possibile fare un’analisi dell’incidenza delle patologie prese in esame in quanto i registri tumori coprono sono una parte del territorio italiano. Questo ha limitato la capacità di analizzare la situazione di patologie tumorali a bassa letalità.

Lo studio ha stimato inoltre l’impatto sanitario in termini di mortalità attesa prendendo in considerazione tre diverse ipotesi di livello di esposizione della popolazione alle radiazioni ionizzanti: 1) una relativa a rilasci continui di radioattività tipici per funzionamento normale di impianti nucleari, 2) una relativa a rilasci continui uguali ai massimi registrati nei dati ufficiali europei per il funzionamento normale di impianti nucleari, 3) una relativa a rilasci continui e molto consistenti causati da un continuo funzionamento anomalo (cioè continue situazioni incidentali di lieve o moderata intensità, molto diverse comunque da incidenti gravi, per i quali le dosi alla popolazione circostante sarebbero molto superiori, come nei casi di Chernobyl e Fukushima).
Le stime, effettuate sulla base di dati ufficiali europei, mostrano che assumendo che durante tutto il periodo di funzionamento degli impianti nucleari in esame i rilasci di radioattività siano stati uguali al livello massimo registrato in condizioni normali, il numero di decessi (per patologie tumorali correlabili con l’esposizione a radiazioni ionizzanti) attesi nelle popolazioni prese in esame sarebbe inferiore a 1 nell’insieme di tutti i Comuni e per tutto il periodo di osservazione (dal 1980 al 2008).
Solo in caso di rilasci consistenti di radioattività (100 volte i livelli massimi registrati in dati ufficiali) per tutto il periodo di funzionamento degli impianti si avrebbe nei circa 30 anni di osservazione un numero di casi attesi (per patologie tumorali per le quali l’esposizione a radiazioni ionizzanti ha un ruolo eziologico) superiore a 1, e tale numero rappresenterebbe circa l’1% del totale di decessi osservati per tali patologie.
Lo studio raccomanda comunque di predisporre, nel caso di impianti futuri, un’adeguata sorveglianza sia dei livelli di esposizione a radiazioni ionizzanti sia di tipo sanitario relativamente alle patologie potenzialmente correlate con l’esposizione a radiazioni ionizzanti.

Si allega l’intero Rapporto: qui

Qualità dell’acqua a Fukushima Daiichi

65

Il Governo del Giappone ha richiesto all’Agenzia per l’Energia Atomica giapponese (JAEA) un’analisi dettagliata dell’acqua presso la centrale nucleare di Fukushima Daiichi. Risponde con una analisi molto dettagliata il METI (Ministry of Economy, Trade and Industry)[1,2].
Riportiamo qui di seguito i risultati, indicando con “ND” (not detectable) i valori non rilevabili (i.e. al di sotto dei limiti di rilevabilità).

  • campione del 02/08/2015 – acque sotterraneee/freatiche pompate dal sistema di by-pass della centrale:

Cs134 = ND (limite di rilevabilità 0.0053 Bq/l)

Cs137 = 0.0068 Bq/l

Totale α = ND (limite di rilevabilità 0.63 Bq/l)

Totale β = ND (limite di rilevabilità 0.45 Bq/l)

H3 = 130 Bq/l

Sr90 = 0.0040 Bq/l

  • campioni del 19-20/08/2015 – acque sotterranee/freatiche pompate dal sistema di drenaggio della centrale e successivamente purificate:

66

Per confronto si tengano presenti i seguenti valori:

  • Target operativi

Cs134 = 1 Bq/l

Cs137 = 1 Bq/l

Totale β = 5 Bq/l (che diventa 1 Bq/l, come obiettivo nel sondaggio condotto una volta ogni dieci giorni)

H3 = 1500 Bq/l

  • Limiti secondo la normativa vigente per le acque di scarico

Cs134 = 60 Bq/l

Cs137 = 90 Bq/l

H3 = 60000 Bq/l

Sr90 = 30 Bq/l

  • Limiti secondo le linee guida dell’OMS per la qualità dell’acqua potabile

Cs134 = 10 Bq/l

Cs137 = 10 Bq/l

H3 = 10000 Bq/l

Sr90 = 10 Bq/l

Non possiamo dunque fare a meno di notare che i valori registrati sono ottimi, in quanto tutti ampiamente al di sotto dei limiti prefissati – ivi compresi quelli che caratterizzano la potabilità dell’acqua (in termini di radioattività).
Infine, approfittiamo di questo brevissimo post per consigliare la visione di un’interessante filmato. Vi troverete “riassunti”, in un agile confronto tra le istantanee di oggi e quelle immediatamente successive al disastro del 11/03/2011, alcuni dei lavori in corso a Ichi-Efu, di cui avevamo già parlato.

Eccolo:

[1] http://www.meti.go.jp/english/earthquake/nuclear/decommissioning/pdf/20150902_01a.pdf

[2] http://www.meti.go.jp/english/earthquake/nuclear/decommissioning/pdf/20150901_01a.pdf

NORM in Norway

[storia apparentemente paradossale di “depositi nucleari” in un Paese “100% rinnovabile”]

La produzione di energia elettrica in Norvegia è rinnovabile quasi al 100%: circa il 97% è idroelettrica, il resto viene da gas (poco meno del 2%) ed eolico (poco più dell’1%), “qualcosina” da biomasse ed incenerimento dei rifiuti; si hanno anche “tracce” di produzione da fonte solare, carbone fossile e petrolio.
Non ci sono dunque centrali nucleari in Norvegia. Se ne era parlato anche negli ultimi anni, inseguendo alcune idee innovative basate sull’utilizzo del Torio, ma per ora tutto tace, o meglio è sulla carta a livello di proposal. Ci sono, invece, due reattori di ricerca, ancora operativi, quello ad acqua pesante bollente (Heavy Water Boiling Reactor – HBWR) ad Halden ed il JEEP II a Kjeller; mentre altri due sono “in pensione” da tempo, JEEP I e NORA. (Aggiungiamo come pura curiosità che il “pensionato” JEEP I entrando in funzione nel 1951 fu il primo reattore operativo in Europa, fuori dai confini di Gran Bretagna e Francia, e del blocco sovietico.)
Come praticamente in tutti i Paesi avanzati, la tecnologia nucleare trova applicazione in Norvegia anche in campo medico (e.g. radio-diagnostica e radio-farmacologia) ed industriale (e.g. CND, e trattamento e stoccaggio di rifiuti radioattivi). Tutte queste attività sono monitorate in conformità alla regolamentazione internazionale dalla Statens strålevern, ossia la Norwegian Radio Protection Authority (NRPA).

Fig.1A sinistra, la mappa dei principali “luoghi di lavoro” della NRPA. A destra, in alto, il deposito (pit storage) del combustibile esausto del JEEP II a Kjeller; in basso, sempre a Kjeller, il deposito del combustibile esausto dei due reattori “pensionati” JEEP I e NORA. A Halden il combustibile esausto è stoccato all’interno dello stesso edificio del reattore.
Fig.1 A sinistra, la mappa dei principali “luoghi di lavoro” della NRPA. A destra, in alto, il deposito (pit storage) del combustibile esausto del JEEP II a Kjeller; in basso, sempre a Kjeller, il deposito del combustibile esausto dei due reattori “pensionati” JEEP I e NORA. A Halden il combustibile esausto è stoccato all’interno dello stesso edificio del reattore.

A gennaio 2011 l’inventario dell’IFE [1] concernente il materiale irraggiato registrava un totale di circa 18 tonnellate (comprensive del combustibile ancora all’interno dei reattori funzionanti) – un volume facilmente gestibile, anche tenuto conto del cemento e delle varie strutture con cui tale combustibile viene impacchettato, dato che, per esempio, la densità del U238 metallico è di circa 19 t/m3.
Sembrerebbe dunque che non ci sia molto lavoro per la NRPA. In realtà, i rifiuti radioattivi in Norvegia offrono volumi assai più interessanti, appena ci si sposta dallo stoccaggio del combustibile nucleare esausto a quello dei Naturally-Occurring Radioactive Materials (NORM).
Sebbene, infatti, come abbiamo visto, non utilizzi grandi quantitativi di petrolio per la generazione di energia elettrica, la Norvegia è uno dei maggiori produttori di petrolio al mondo (poco meno del 3% del totale, nel 2013). E l’estrazione del petrolio – come qualsiasi altra attività estrattiva, mineraria, di raffinazione o di lavorazione delle materie prime – comporta tutta una serie di sottoprodotti, alcuni dei quali sono radioattivi, in quanto contengono radioisotopi che abbondano nella crosta terrestre [2]. Va alla grande anche l’estrazione del gas; anzi per molti aspetti va anche meglio di quella del petrolio: la Norvegia, prima dell’embargo europeo alla Russia, era il secondo fornitore di gas dell’UE [3].

Fig. 2“Radioisotopi naturali”. Serie del Torio e serie dell’Uranio: a partire dal Th-232 e dall’U-238 due distinte catene di decadimento generano in Natura due serie di elementi radioattivi. Tali radionuclidi si concentrano in modo diverso nei vari materiali componenti la crosta terrestre.
Fig. 2 “Radioisotopi naturali”. Serie del Torio e serie dell’Uranio: a partire dal Th-232 e dall’U-238 due distinte catene di decadimento generano in Natura due serie di elementi radioattivi. Tali radionuclidi si concentrano in modo diverso nei vari materiali componenti la crosta terrestre.

Dal 1° gennaio 2011 è in vigore un nuovo regolamento per cui il trattamento e la gestione dei rifiuti radioattivi – nonché il monitoraggio ed il contrasto dell’inquinamento radioattivo – sono sotto lo stesso quadro normativo di tutti gli altri prodotti/rifiuti inquinanti e pericolosi (Pollution Control Act – 1981). Il regolamento prevede tra le altre cose due serie di criteri che definiscono le “scorie” radioattive: ad esempio, tutti i rifiuti contenenti ≥ 1 Bq/g da sorgente Ra226 sono definiti come radioattivi, mentre solo i rifiuti radioattivi contenenti ≥ 10 Bq/g da sorgente Ra226 devono essere smaltiti in un deposito (repository) attrezzato allo scopo e stoccati in via definitiva. I rifiuti con livelli di radioattività tra 1 e 10 Bq/g (da Ra226) possono essere gestiti e smaltiti da qualsiasi azienda di rifiuti che possegga una licenza per la gestione dei rifiuti pericolosi. Per la gestione degli altri rifiuti radioattivi è necessaria una licenza ad hoc rilasciata dalla NRPA.
I maggiori quantitativi di “scorie” radioattive contenenti radioisotopi presenti in Natura (NORM) e con livelli di attività da Ra226 ≥ 10 Bq/g provengono dal settore Oil&Gas. Tutto questo materiale, opportunamente trattato, deve dunque confluire in un deposito finale (repository).

Fig. 3“Chi cerca trova”. Una piccola galleria fotografica che mostra alcuni posti dove di solito si annidano e concentrano i NORM nelle varie fasi che caratterizzano l’estrazione del petrolio e del gas.
Fig. 3 “Chi cerca trova”. Una piccola galleria fotografica che mostra alcuni posti dove di solito si annidano e concentrano i NORM nelle varie fasi che caratterizzano l’estrazione del petrolio e del gas.

Risale al 1981 la scoperta di livelli della radioattività “fuori norma” (i.e. valori medi al di sopra di quello atteso per il fondo naturale) in depositi (incrostazioni, sabbie e fanghi) di sottoprodotti dell’estrazione del petrolio e del gas del Mare del Nord. L’attività specifica del materiale secco solido varia dal livello del fondo naturale a diverse centinaia di Bq/g (da Ra226 e Ra228) [4]. Le dosi per i lavoratori coinvolti nelle diverse operazioni di movimentazione e trattamento/pulizia delle attrezzature o dei rifiuti contaminati sono di solito molto basse (valore massimo stimato: 0.2 mSv/anno) – ben al di sotto del limite di dose standard per i lavoratori esposti (20 mSv/anno). Il problema principale è lo smaltimento di questo tipo di rifiuti radioattivi, considerato l’ammontare delle superfici da pulire, la raccolta ed il trattamento delle scorie (i.e. radioattività comunque contenuta, ma grandi quantità da smaltire).

Tab. 1Nell’industria Oil&Gas i NORM vengono suddivisi in categorie a seconda del tipo di incrostazioni/scorie (i.e. in inglese “scale”). Questo è dovuto al fatto che i rifiuti NORM nelle attività di estrazione traggono origine da particolari composti (e.g. il Ra226 tende a concentrarsi maggiormente nel solfato di bario o nel carbonato di calcio, il Pb210 nell’acciaio, ecc.).
Tab. 1 Nell’industria Oil&Gas i NORM vengono suddivisi in categorie a seconda del tipo di incrostazioni/scorie (i.e. in inglese “scale”). Questo è dovuto al fatto che i rifiuti NORM nelle attività di estrazione traggono origine da particolari composti (e.g. il Ra226 tende a concentrarsi maggiormente nel solfato di bario o nel carbonato di calcio, il Pb210 nell’acciaio, ecc.).
Fig. 4 Qualche altro dettaglio su incrostazioni, fanghi, depositi vari, decontaminazione e smaltimento dei NORM nella filiera Oil&Gas norvegese. Questo tipo di NORM viene spesso denominato dagli addetti del settore Low Specific Activity Scale (abbreviato: LSA Scale).
Fig. 4 Qualche altro dettaglio su incrostazioni, fanghi, depositi vari, decontaminazione e smaltimento dei NORM nella filiera Oil&Gas norvegese. Questo tipo di NORM viene spesso denominato dagli addetti del settore Low Specific Activity Scale (abbreviato: LSA Scale).

Dal 2008 la Norvegia dispone di un deposito approntato per ricevere i grandi quantitativi di rifiuti NORM provenienti dalla filiera Oil&Gas, sia nazionale che europea (si vedano Fig. 5 e 6, e relative didascalie per qualche dettaglio). Il deposito si trova a Sløvågen, Gulen, nella contea di Sogn og Fjordane, presso il sito industriale di Stangeneset, ed attualmente è in grado di contenere poco più di 7000 tonnellate di rifiuti NORM, opportunamente stoccati in via definitiva. Tuttavia, si stima che la quantità dei rifiuti possa aumentare in modo significativo in futuro a causa della disattivazione degli impianti offshore.

Fig. 5Sløvågen, Gulen, contea di Sogn og Fjordane, Norvegia. Deposito finale per rifiuti NORM provenienti dall’industria Oil&Gas, presso il sito industriale di Stangeneset. Le operazioni di ricezione sono iniziate nell’ottobre 2008. Nel 2011 erano già state immagazzinate grossomodo 600 t, su di una capacità totale pari a circa 7000 t. Attualmente il tasso di stoccaggio è di circa 50 t/anno. Il sito è candidato a ricevere l’intero ammontare dei rifiuti NORM provenienti dall’industria Oil&Gas europea per i quali è richiesto uno stoccaggio definitivo.
Fig. 5 Sløvågen, Gulen, contea di Sogn og Fjordane, Norvegia. Deposito finale per rifiuti NORM provenienti dall’industria Oil&Gas, presso il sito industriale di Stangeneset. Le operazioni di ricezione sono iniziate nell’ottobre 2008. Nel 2011 erano già state immagazzinate grossomodo 600 t, su di una capacità totale pari a circa 7000 t. Attualmente il tasso di stoccaggio è di circa 50 t/anno. Il sito è candidato a ricevere l’intero ammontare dei rifiuti NORM provenienti dall’industria Oil&Gas europea per i quali è richiesto uno stoccaggio definitivo.
Fig. 6 Ricevimento materiali, movimentazione e stoccaggio al deposito di Gulen.
Fig. 6 Ricevimento materiali, movimentazione e stoccaggio al deposito di Gulen.

Questo è uno dei motivi per cui mentre si utilizza il deposito di Gulen si cercano nuovi spazi e nuove soluzioni.
Problemi analoghi riguardano la gestione dei NORM a più bassa radioattività.
È questo il caso dell’isola di Langøya [5], che è gestita dalla NOAH AS (Norsk Avfallshåndtering AS – letteralmente “azienda norvegese per il trattamento dei rifiuti”), e che sembrerebbe avviata verso una vera e propria ristrutturazione ambientale.
Come si può infatti facilmente notare dalle fotografie in Fig. 7, attualmente l’isola non offre uno spettacolo particolarmente gradevole; il che è dovuto al semplice fatto che dopo essere stata utilizzata per decine di anni come cava (estrazione di calcare), dal 1985 Langøya è una vera e propria discarica di rifiuti speciali. Ed i maggiori volumi sono dovuti allo stoccaggio di ceneri NORM [6], provenienti da vari settori dell’industria manifatturiera e dalla combustione dei rifiuti urbani sia norvegesi che svedesi e danesi. Sull’isola sono anche presenti alcune strutture dedicate al trattamento ed alla trasformazione dei vari rifiuti che vi confluiscono. Va infatti preso atto che una delle occupazioni principali della NOAH sull’isola è quella di rendere i rifiuti ivi trasportati materiali stabili e sicuri per l’ambiente, prima che vengano posizionati nelle ex cave. E se abbiamo capito bene [7], si procede anche ad un parziale recupero dei medesimi attraverso speciali trattamenti che permettono il riutilizzo nell’edilizia.

Fig. 7“Prima della cura”. L’isola di Langøya, nel fiordo di Oslo, tra Norvegia e Svezia, misura 3 km in lunghezza e nella parte più larga appena 500 m. Le foto sono scattate in anni diversi, come si può notare da alcuni cambiamenti morfologici. Nonostante l’elevato livello di sfruttamento fauna e flora selvatica perseverano, offrendo concrete speranze per un completo recupero in futuro.
Fig. 7 “Prima della cura”. L’isola di Langøya, nel fiordo di Oslo, tra Norvegia e Svezia, misura 3 km in lunghezza e nella parte più larga appena 500 m. Le foto sono scattate in anni diversi, come si può notare da alcuni cambiamenti morfologici. Nonostante l’elevato livello di sfruttamento fauna e flora selvatica perseverano, offrendo concrete speranze per un completo recupero in futuro.

I tecnici della NOAH hanno calcolato che, con il tasso di riempimento attuale e tenendo conto dei più probabili sviluppi futuri, entro 10 anni l’isola sarà inutilizzabile, e puntano tutto sulle vecchie miniere di calcare a Brevik (le miniere Dalen).
Lì, forse, potrebbe trovare spazio anche un nuovo deposito dedicato ai NORM più radioattivi.
Tuttavia, secondo quanto riportato dai media, per ora i locali non sono particolarmente entusiasti. Resta quindi molto lavoro da fare e poco tempo per vincere la loro diffidenza con gli argomenti giusti, ossia soluzioni vantaggiose praticabili.

Fig. 8“Dopo la cura”. Ecco come si immaginano alla NOAH la loro isola nel futuro, una volta chiusa definitivamente la discarica e completate le opere di ristrutturazione ambientale.
Fig. 8 “Dopo la cura”. Ecco come si immaginano alla NOAH la loro isola nel futuro, una volta chiusa definitivamente la discarica e completate le opere di ristrutturazione ambientale.

Note:

[1] Institute for Energy Technology. Fonte: Strålevern Rapport – Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management.

[2] Oltre a quelle già elencate, le industrie che si trovano a fare i conti con i NORM sono quelle che prevedono: combustione di carbone fossile, fusione di metalli, lavorazione di terre rare, produzione di fertilizzanti, produzione di materiali edili, riciclo di materiali vari. Per questo motivo spesso si usa l’acronimo TENORM (Technologically Enhanced NORM), per identificare quei materiali in cui la quantità di radioattività risulta aumentata a seguito di una maggiore concentrazione dei radionuclidi ottenuta attraverso i vari processi industriali cui sono sottoposti. È possibile ritrovare i NORM anche in altri settori, al di fuori dell’industria: esposizione al Radon nelle abitazioni, voli aerei, ecc. Per chi desiderasse maggiori dettagli suggeriamo di consultare quanto riportato dalla WNA qui.

[3] Per quanto riguarda la produzione di petrolio sembra che in Norvegia il picco sia stato raggiunto nel 2001. Per il gas ci sono, invece, previsioni più rosee. Qualche dettaglio in più qui e qui.

[4] Sulla base delle misurazioni su campioni di depositi induriti ed incrostazioni (vedi Fig. 4), raccolti dagli impianti offshore norvegesi, il valore medio della concentrazione di radioattività (da Ra226 e Ra228) si avvicina molto a 25 Bq/g: i risultati variavano da pochi Bq/g a qualche centinaio di Bq/g – si noti che l’estremo superiore dell’intervallo risulta comunque assai inferiore ai valori massimi riportati in alcuni studi concernenti la produzione offshore in USA (e.g. 3700 Bq/g) ed onshore in Siria (e.g. 1000 Bq/g).

Qui di seguito alcuni appunti sui radionuclidi più citati nel presente articolo:

  • il Ra226 ha un’emivita di 1600 anni, è un emettitore alfa e proviene dalla serie dell’U238 (vedi Fig. 2);
  • il Ra228 ha un’emivita di 5.75 anni, è un emettitore beta e proviene dalla serie del Th232;
  • una misura della radioattività generica di un determinato materiale non fornisce informazioni significative sulla radiotossicità del materiale stesso (e.g. un’incrostazione di solfato di bario può presentare 23 MBq/t come somma dell’attività specifica di tutti i radioisotopi naturali ivi contenuti). Tuttavia, monitorando i valori dell’attività del radio si utilizza un approccio cautelativo/conservativo, in quanto tra tutti i radioisotopi presenti in Natura quelli del radio sono tra i più attivi (minore emivita), tra i più diffusi e con emissioni più pericolose in caso di contaminazione del ciclo alimentare o di esposizione prolungata.

[5] Isola sita nel Comune di Re, Oslofjord, Norvegia – da non confondersi con l’ominima che si trova sempre nel fiordo di Oslo ma nel Comune di Tjøme, e nemmeno con l’altra omonima ma assai più grande isola dell’arcipelago delle Vesterålen.

[6] Le ceneri volanti (fly ash), per esempio, ottenute come sottoprodotto della combustione di carbone polverizzato nelle centrali termoelettriche, rientrano tipicamente nella categoria NORM, ma con livelli di radioattività da Ra226 inferiori ai 10 Bq/g.

[7] Molte delle informazioni su questo argomento le abbiamo potute raccogliere solo in norvegese.

Fonti principali:

Astrid Liland, NRPA, “Advances in NORM Management in Norway and the Application of the ICRP Publication 103 Recommendations”. First ICRP Symposium, 24-26 October 2011, Bethesda, USA.

Liland A. et al., “Advances in NORM management in Norway and the application of ICRP’s 2007 recommendations”, 2012 Oct-Dec;41(3-4):332-42. doi: 10.1016/j.icrp.2012.06.021. Epub 2012 Aug 22.

Cowie M. et al., “NORM management in the oil and gas industry”, 2012 Oct-Dec;41(3-4):318-31. doi: 10.1016/j.icrp.2012.06.008. Epub 2012 Aug 22.

Per Varskog, Norse Decom AS, “Exposure to radiation in an underground NORM repository”. Dresden, 2010.

Per Varskog, Norse Decom AS, “Norway’s disposal site for oil industry NORM”.

Strand T., “NORM in the Norwegian Oil and Gas Industry – Activity Levels, Occupational Doses and Protective Measures”.

Weers A.W. et al., “Current Practice of Dealing with Natural Radioactivity from Oil and Gas Production in EU Member States”. Report EUR 17621, Directorate-General Environment, Nuclear Safety and Civil Protection, European Commission, Luxembourg (1997).

Strand T. et al., “Deposits of Naturally Occurring Radioactivity in the Production of Oil and Natural Gas”. Norwegian Radiation Protection Authority Report 1997:1, p. 136 (1997).

MacArthur A., “Development and Operation of a NORM Processing and Disposal Facility for the U.S. Oil and Gas Industry”. 19th Annual National Conference on Radiation Control, May 18-21, 1987, Boise, Idaho, USA. Conference on Radiation Control Program Directors, CRCPD Publ. 88-2, Frankfort, KY, USA, 1988.

Al-Masri M.S., Suman H., “NORM Waste Management in the Oil and Gas Industry: the Syrian Experience”. J. Radioanalytical and Nuclear Chemistry 256(1): 159-162, 2003.