Nuova visita alla centrale nucleare di Krško

A grande richiesta, proponiamo una quarta visita al complesso della Centrale Nucleare di Krško, in Slovenia.
La visita avrà luogo il prossimo 8 aprile. Qui sotto riportiamo il volantino con tutte i dettagli e i riferimenti per formalizzare l’iscrizione. Per ogni richiesta di chiarimento, non esitate a contattarci!

volantinoKrskoIV

It’s a matter of ethics, Mr. President!

How Obama’s administration is undermining the best non proliferation project ever, in the most unfortunate time.

While the Cold War’s winds are blowing again over relations between the U.S. and Russia since after the Crimean crisis and recrudesced with the war over Syria, President Obama seeks to send the wrong message to his Russian counterpart in the very end of his administration, risking to hamper costly efforts on non proliferation of nuclear weapons and casting a shadow on U.S. determination on pursuing global Peace.

mox1

Recently issued 2017 Fiscal Year Obama’s proposal solicits to quit the MOX program at Savannah River facility in South Carolina. This facility, under construction since 2007 for an up to date estimated budget of 7.7 billion dollars, was envisaged to be operational this year to start the processing of weapon grade uranium and plutonium to mixed oxide fuel (MOX) to feed nuclear reactor and produce carbon-free electricity. The facility is part of two bilateral agreements the U.S. contracted with Russia regarding non proliferation of nuclear weapons: Megaton to Megawatts (1993) [see previous post on the topic] and Plutonium Management and Disposition Agreement (2000).
Under the former, 15000 weapons have already been destroyed, while the latter calls for U.S. and Russia to destroy 34 metric tons of plutonium each – something as 8500 warhead each.
There is no technical reason to quit the project, that despite increasing funding cuts through the years is now 70% complete and the plant already hosts most of the sophisticated equipment that will be need to the processing. The last budget destined by the Congress to the plant were 380 million dollars last December, than the presidential decision to ax the funds for 2017 and destine the U.S. military grade plutonium surplus to waste disposal in Carlsbad, New Mexico.

mox2

The MOX plant at Savannah River is one of many federal budget programs risking interruption due to opposite parties vetoes and lack of political compromise. Republican Senator Tim Scott from South Carolina said the MOX is a vital program that has been continuously undermined by Obama’s administration who spread misinformation about its state of progress.
On another note, Russia already completed its own MOX plant and it is ready to feed with it fast neutrons reactors (for example the BN-800 connected to the grid just last year). In our opinion the U.S. simply can not afford to interrupt, or – even worse – to scrap such an important project. Or should we recognize that the President prefers watching dazed a Russia which makes great strides towards the future of nuclear recycling?
Neither South Carolina General Attorney, Alan Wilson, took the news well, saying that the Federal Government will owe 1 million dollars daily to the State, effective January 1st, 2016, if plutonium stocked at Savannah River is neither processed nor disposed.
Europe developed a large capacity of feeding nuclear reactors with MOX: currently over 35 European reactor are licensed to use MOX as fuel, and 22 French reactors can use MOX up to 30% of fuel blend. In a conservative hypothesis, burning a 30% of MOX in one third of the world’s reactor would remove about 15 tons of warhead plutonium per year, that means 3000 warheads per year burnt to produce 110 billion kWh of electricity.
Now it is really difficult to understand the rationale behind a decision that in hindsight seems not unlike that of people used to sweep under the rug. With the aggravating circumstance that in this case the “powder” also has an extremely interesting economic and energetic value. In fact there is no doubt that immobilize and store the plutonium through vitrification and deep geologic burial adds significant political complexity and physical challenges.
President Barack Obama, who, in 2009, was credited a Nobel Prize for Peace, is now freezing his only possible success regarding non proliferation efforts. Whatever could be the reason – like funding the costly Obamacare and other environmental projects possibly more close to the anti-nuclear lobby – he’s sending a two-fold dangerous message in a time of increased tension in the bilateral relations with Russia and announced efforts to reduce U.S. carbon footprint on the planet.
We hope this decision would not come to be effective and the next U.S. Governments – as the rest of the World – will keep betting on nuclear fuel recycle. Namely using the existing stockpile of weapons-grade plutonium, but also implementing Partitioning and Transmutation technology (P&T). This is the only highway we currently have to reduce both volume and radiotoxic level of nuclear waste, in order not to put those economical and environmental costs on the shoulders of the future generations. And, at the same time, to send the message that a World without nukes – or at least with less nukes – is actually possible.

mox3

 

 

Megatons to megawatts

[how to produce electricity by getting rid of 20k nuclear warheads]

This article was originally published in Italian on the 12th of March, 2014.

megaton01

Last weeks world news – a source of concern for the condition of Ukraine’s population – have brought back to the top the spectre of the nuclear weaponry race.

In addition to real fatalities and strong divisions – the price for fierce clashes and the result of national policies we do not want to describe here, nor we are able to judge in every aspect – we see an increased fear that the deterioration of the situation could bring to contrasts we all expected would have been just a relic of the past, after the end of the Cold War.

In order to exorcise such frightening thought we want to remember how much we can get from the use of energy sources as vehicles of Peace. And among all nuclear energy.

megaton02

In December 2013 the program popularly known as “Megatons to Megawatts” was completed. On the basis of this program the United States agreed with Russian Federation to purchase some Low-Enriched Uranium (i.e. with a 235U concentration below 20%) coming from the reprocessing of the Highly-Enriched Uranium (i.e. with a 235U concentration above 80%) contained in the former USSR nuclear warheads. The official name of the program was “Agreement between the Government of the Russian Federation and the Government of the United States of America Concerning the Disposition of Highly-Enriched Uranium Extracted from Nuclear Weapons.”, dated February 18th, 1993.

It was estimated that in the last twenty years the United States have produced about 10% of its electricity by dismantling 20k nuclear warheads сделано в России (made in Russia); in other words, they have recycled 500 tonnes of Russian bomb-grade HEU into 14k tonnes of LEU. This is energetically equivalent to: 3.4 billions tonnes of coal, 12.2 billions of oil barrels, 2.6E15 (2.6 millions of billions of) cubic meters of natural gas [1].

Interesting to know how all was born thanks to the initiative of a Physicist at MIT, Thomas L. Neff [2], who in October 1991 took pen and paper and wrote to New York Times, voicing his apprehension. He had in mind a very simple idea on how to turn an uncomfortable and potentially dangerous legacy in a useful and highly symbolic initiative. Two months later Neff was invited in Moscow to discuss the details of his proposal with Russian scientists and Government’s officials. On August 28th, 1992 negotiation started; Clinton and Yeltsin signed the final agreement in 1993.

The details of the proposal were put on paper for the first time on October 24th, 1991 in a Op-Ed in the New York Times. The project was so successful that it was honored on the same newspaper on January 24th .

Notes
[1] http://www.usec.com/russian-contracts/megatons-megawatts

[2]Thomas L. Neff assisted US Governments over the years in fixing some problems related to the Highly-Enriched Uranium management and nuclear security. For such activity he was awarded in 1997 with Leo Szilard Award in Physics. [http://www.world-nuclear.org/sym/2006/neffbio.htm]

Mi illumino meglio

Ad un anno di distanza, alla vigilia dell’edizione 2016 dell’iniziativa “Mi illumino di meno”, riproponiamo questo nostro articolo sull’argomento.

Nucleare e Ragione

31

Si celebra oggi l’undicesima Giornata del Risparmio Energetico, evento culminante della campagna radiofonica “Mi illumino di meno” promossa dalla trasmissione Caterpillar di RAI Radio2.
L’iniziativa, che mira a sensibilizzare l’opinione pubblica attraverso lo sviluppo di buone pratiche quotidiane di risparmio energetico, certamente lodevole, suscita in noi anche alcuni spunti di riflessione che non sono scontati e che vogliamo condividere con i nostri lettori.

La prima osservazione riguarda la natura stessa dell’iniziativa e l’incredibile seguito mediatico che ne è derivato, consacrandone il successo già a partire dall’edizione del 2005. E’ significativo notare come la più importante campagna di sensibilizzazione culturale italiana su un tema così importante come quello dell’uso razionale dell’energia, nasca non per iniziativa delle istituzioni, ma in seno ad una trasmissione di un’emittente radiofonica. Non che questo rappresenti di per sé un motivo di critica, ci mancherebbe, ma è quantomeno doveroso rendere evidente questo inusuale ribaltamento di…

View original post 721 altre parole

Energia low carbon a chilometro zero – zero soluzioni, molti problemi

[numeri alla mano si dimostra come proporre l’utilizzo esclusivo di energia rinnovabile prodotta localmente non sia affatto una buona idea in un Mondo dove la maggior parte della popolazione va concentrandosi in megalopoli – ricordando che abbinare a tale proposta quella di una riduzione dei consumi a livello globale con “tagli lineari” significa distruggere le speranze di chi lotta per uscire dalla povertà materiale]

Alcuni ambientalisti e sostenitori delle energie rinnovabili hanno una preferenza ideologica per gli impianti di dimensioni ridotte e su scala locale – a livello di area metropolitana, per esempio. Che fare allora se il vostro quartiere si presenta così?

Fig.1Skyline di Tokyo
Fig.1 Skyline di Tokyo

Ad alcune persone potrebbe allettare l’idea di far funzionare Tokyo utilizzando esclusivamente energia rinnovabile prodotta localmente. Ma incontreranno qualche seria difficoltà a metterla in pratica.
Dal 2008 la maggior parte dell’umanità vive in città. Ed entro il 2050 è probabile che la tendenza si consolidi – alcune stime si aggirano attorno al 70-80%. La sfida energetica chiave di questo secolo sarà il soddisfacimento del fabbisogno delle megalopoli, e l’energia prodotta a livello locale e distribuita “a chilometro zero” non può essere una soluzione. Cerchiamo di capire il perché sbrogliando la matassa delle questioni coinvolte in questo “macro problema energetico”.
Innanzitutto alcune considerazioni. Un abitante del Nord America in media ha un consumo energetico annuo pari a poco più di 7 tonnellate equivalenti di petrolio (tep). Il che equivale a circa 81 MWh/p/anno, ossia ad un tasso di utilizzo di potenza media di 9 kW pro capite – quasi il doppio di quello che si ha in Paesi come Germania, Francia e Giappone. E questo senza che si abbiano evidenze che i nordamericani godano di maggiore benessere a causa del loro uso maggiore di energia: gli abitanti degli Stati Uniti d’America non vivono più a lungo, non sono più sani, o meglio istruiti di altri abitanti dei Paesi c.d. sviluppati che consumano quantità di energia pro capite pari alla metà. Inoltre occorre sottolineare che le emissioni globali di anidride carbonica diminuirebbero di quasi il 10% se i nordamericani consumassero come gli europei. Dunque, non è necessario né auspicabile che gli abitanti dei Paesi in via di sviluppo emulino in tutto e per tutto i modelli di consumo del Nord America.

Fig.2Consumo di energia primaria pro capite per 4 Paesi campione. Storico 1965-2014 – si noti la progressiva diminuzione in atto anche prima della crisi mondiale del 2008-2009. Fonte: elaborazione CNeR su dati World DataBank e BP2015.
Fig.2 Consumo di energia primaria pro capite per 4 Paesi campione. Storico 1965-2014 – si noti la progressiva diminuzione in atto anche prima della crisi mondiale del 2008-2009. Fonte: elaborazione CNeR su dati World DataBank e BP2015

Un’ulteriore prova a favore dell’opportunità di limitare e ridurre i consumi di energia pro capite nei Paesi sviluppati è data dalla stessa evoluzione dei loro consumi negli ultimi decenni, che sembrano aver raggiunto il picco quasi ovunque. Per esempio, il consumo pro capite è diminuito costantemente nel Regno Unito nell’ultimo decennio, ed è ora al punto più basso da oltre quattro decenni. Declini evidenti si hanno anche in Germania e Giappone, e negli stessi Stati Uniti d’America, senza che siano state riscontrate riduzioni della qualità della vita.
Qualsiasi politica climatica/energetica sensibile agli effetti sul lungo termine dovrebbe includere una forte determinazione a favorire la continuazione di questo trend.
La convinzione che il Mondo intero possa passare ai livelli americani di consumo dell’energia godendo contemporaneamente di un sistema di produzione a basse emissioni di carbonio entro la metà di questo secolo non solo ignora le lezioni vitali apprese durante le transizioni energetiche precedenti avvenute nel corso della storia dell’umanità, ma, dato il ruolo attuale delle energie rinnovabili e del nucleare, appare anche delirante.
Un buon target per i consumi energetici pro capite potrebbe essere il Giappone, oppure Hong Kong, visto che, come abbiamo detto, le città svolgeranno con ogni probabilità un ruolo chiave.
Come ridurre dunque il consumo di energia?
Il modo più efficace per farlo è semplice: renderlo “denso”.
Dunque entro il 2050 ci servono molti impianti centralizzati di grandi dimensioni, di qualsivoglia fonte sostenibile, eolica, solare o nucleare. Oppure ci potrebbero essere utili grandi centrali nucleari ed idroelettriche, grandi parchi fotovoltaici, eolici e marini (ad energia mareomotrice), abbinati a piccole centrali nucleari modulari e/o idroelettriche, e ad elaborati sistemi di pompaggio e stoccaggio. (Presumendo, speranzosi, che nei prossimi 35 anni riusciremo a sbarazzarci dei combustibili fossili almeno nella produzione di energia elettrica – una prospettiva ad oggi improbabile.)
In ogni caso la risposta non è l’energia “diffusa localmente”, per alcuni semplici motivi che individueremo qui di seguito.
Prendiamo Manhattan. Non è certo un esempio tipico di quello che la maggior parte di noi considera come un “ideale verde”. Eppure a Manhattan si ha un consumo di energia per abitante significativamente più basso che in quasi ogni altra città americana. Allo stesso tempo nel suo complesso il consumo di energia di questo “quartiere” è di gran lunga maggiore della quantità di energia che potrebbe essere fornita in teoria dalle fonti rinnovabili locali. In media un isolato a Manhattan consuma energia ad un tasso di oltre 1000 kWh per metro quadrato all’anno, una densità di potenza superiore a 100 W/m2 [1] – quasi due ordini di grandezza superiore alla densità di potenza dell’eolico [2] [3]; sempre che si possa anche solo ipotizzare di “riforestare” Manhattan con delle pale eoliche. E le potenzialità dell’energia solare non ci confortano di certo. Se si potesse coprire il 20% di Manhattan di pannelli solari avremmo grossomodo 4 W/m2 [2] [4].
Che dire del il resto del Nord America? Una volta ridotto il consumo di energia pro capite ai livelli giapponesi, un’idea sensata – ma forse impopolare – potrebbe essere quella di far funzionare molte città americane principalmente grazie alle fonti rinnovabili locali. O no?
Il grafico sottostante mostra la densità di popolazione rispetto alla densità di potenza resa disponibile in uno scenario di minori consumi pro capite per alcune città campione degli USA (USA in Japanese style):

Fig.3Densità di potenza media utilizzata in alcune città campione degli USA, dove i consumi sono stati ridotti ai livelli medi giapponesi (3,6 tep pro capite di energia primaria). Fonte: elaborazione CNeR su dati U.S. Census Bureau, Wikipedia e BP2015
Fig.3 Densità di potenza media utilizzata in alcune città campione degli USA, dove i consumi sono stati ridotti ai livelli medi giapponesi (3,6 tep pro capite di energia primaria). Fonte: elaborazione CNeR su dati U.S. Census Bureau, Wikipedia e BP2015
Tab.1Confronto tra due diversi casi di “consumo energetico” in alcune città campione degli USA. Il “caso 2” è quello riportato in Fig.3 (USA in japanese style); il “caso 1” è quello basato sui consumi medi pro capite di un cittadino statunitense (7,2 tep di energia primaria). Fonte: elaborazione CNeR su dati U.S. Census Bureau, Wikipedia e BP2015
Tab.1 Confronto tra due diversi casi di “consumo energetico” in alcune città campione degli USA. Il “caso 2” è quello riportato in Fig.3 (USA in japanese style); il “caso 1” è quello basato sui consumi medi pro capite di un cittadino statunitense (7,2 tep di energia primaria). Fonte: elaborazione CNeR su dati U.S. Census Bureau, Wikipedia e BP2015

Solo una città con bassa densità di popolazione come Phoenix ha una qualche possibilità di ottenere la maggior parte della sua energia da fonte rinnovabile. Ricoprendo infatti il 25% di Phoenix di pannelli fotovoltaici teoricamente si avrebbe la totale copertura del fabbisogno energetico della città. (L’Arizona è assolata!) Tuttavia, trattandosi di una superficie molto estesa, è facile immaginare che qualcuno avrebbe qualcosa da ridire a riguardo [5]. In ogni caso rimarrebbe un problema ancora più grande, e ad oggi insormontabile: ottenere più del 50% dell’energia di Phoenix da fonte solare locale richiederebbe un modo economico per immagazzinarla su larga scala.
Un sistema che prevede più del 50% di energia proveniente da fonte solare inevitabilmente richiede la contabilizzazione delle superfici di suolo da dedicare a grandi sistemi di immagazzinamento, e delle notevoli perdite, causate sia dalla ridotta efficienza dei sistemi fotovoltaici ai quali viene abbinato lo stoccaggio dell’energia elettrica prodotta sia dalla decurtazione degli eccessi di produzione sfasati rispetto ai picchi di domanda.
La prospettiva di avere città nordamericane che funzionano in gran parte a “fonti rinnovabili locali” sembra quindi improbabile, e l’83% dei nordamericani vive in città.
Passiamo al resto del Mondo.
Le 200 aree urbane più grandi del Mondo ospitano oltre 1,2 miliardi di persone, e un quarto di queste aree sono più densamente popolate di New York (10.000 persone per chilometro quadrato) – come illustrato dal seguente grafico:

Fig.4Densità di popolazione nelle 200 aree metropolitane più grandi del Mondo. Fonte: (R. Wilson, 2013)
Fig.4 Densità di popolazione nelle 200 aree metropolitane più grandi del Mondo. Fonte: (R. Wilson, 2013)

Prima di chiederci se queste città possano funzionare a “fonti rinnovabili locali” dobbiamo evidenziare le disparità che si riscontrano attualmente nel consumo di energia. Qui di seguito riportiamo un confronto tra la popolazione di alcuni Paesi campione ed il loro consumo di energia pro capite – le popolazioni sono tracciate su una scala logaritmica a causa di Cina e India.

Fig.5aConsumi di energia primaria pro capite di alcuni Paesi campione per il 2014. Fonte: elaborazione CNeR su dati World DataBank e BP2015
Fig.5a Consumi di energia primaria pro capite di alcuni Paesi campione per il 2014. Fonte: elaborazione CNeR su dati World DataBank e BP2015
Fig.5bCopertura dei consumi di energia primari – Alla voce North America abbiamo sommato i dati di USA, Canada e Messico. Complessivamente i Paesi campione in figura rappresentano circa il 68% dei consumi mondiali dell’anno 2014. Fonte: elaborazione CNeR su dati BP2015
Fig.5b Copertura dei consumi di energia primari – Alla voce North America abbiamo sommato i dati di USA, Canada e Messico. Complessivamente i Paesi campione in figura rappresentano circa il 68% dei consumi mondiali dell’anno 2014. Fonte: elaborazione CNeR su dati BP2015

Mentre ci sono circa 350 milioni di nordamericani che possono, e dovrebbero, ridurre il loro consumo di energia portandolo ai livelli europei, ci sono anche molti abitanti del resto del Mondo – ma anche negli stessi USA – che devono aumentare il loro consumo di energia in modo significativo per migliorare la loro qualità di vita. Per la precisione oltre 35 Paesi del Mondo – con una popolazione totale di oltre 2 miliardi di abitanti – hanno un consumo pro capite inferiore al 10% di quello del Nord America.
Nonostante i desideri (e gli imperativi) di alcune ONG ambientaliste (si veda per esempio questo rapporto WWF a pagina 11) non è auspicabile proporre una riduzione del consumo di energia a livello globale. Bisogna entrare nel dettaglio. È infatti vero che il mondo c.d. sviluppato consuma energia in eccesso, ma nei Paesi sulla via dello sviluppo il consumo di energia è ancora troppo basso ed una sua eventuale diminuzione avrebbe senz’altro impatti negativi. Dovremmo pertanto da una parte ridurre il consumo eccessivo nei Paesi sviluppati e dall’altra aumentare il consumo di energia nei Paesi in via di sviluppo.
Tenendo buono l’esempio del Giappone, se le popolazioni delle 200 più grandi città del Mondo consumassero energia con il tasso giornaliero giapponese si avrebbe una situazione come quella descritta dal seguente grafico:

Fig.6Densità di potenza media utilizzata nelle 200 aree metropolitane più grandi del Mondo, dove si è assunto che i consumi di tutti gli abitanti siano conformi a quelli di un giapponese medio. Fonte: (R. Wilson, 2013)
Fig.6 Densità di potenza media utilizzata nelle 200 aree metropolitane più grandi del Mondo, dove si è assunto che i consumi di tutti gli abitanti siano conformi a quelli di un giapponese medio. Fonte: (R. Wilson, 2013)

In totale 10 città avrebbero una densità di potenza utilizzata superiore a 100 W/m2, 56 città una superiore a 50 W/m2, mentre 181 città ne avrebbero una superiore a 10 W/m2 [1]. Ed abbiamo visto che le fonti rinnovabili difficilmente possono offrire più di 15 W/m2 su larga scala – anzi è più probabile che l’offerta rimanga nella gamma 1-10 W/m2. Questo significa che il 90% delle 200 città più grandi della Terra quasi certamente non può essere alimentato principalmente da energia rinnovabile prodotta localmente. La densità di popolazione di queste città non è significativamente diversa rispetto al resto delle città del Mondo; possiamo quindi concludere che la stragrande maggioranza delle città non può essere alimentata da fonti rinnovabili “local”.

E questo suggerisce l’esistenza di seri limiti al ruolo dell’energia “local” ovunque nel Mondo, un Mondo in cui entro 35 anni oltre il 70% di noi probabilmente vivrà in città.

Le prospettive sono ancora peggiori considerando i diversi Paesi presi singolarmente. Per esempio, delle 200 più grandi aree urbane del mondo, 17 si trovano in India. Eccole raccolte in un grafico:

Fig.7Densità di potenza media utilizzata in 17 delle 200 aree metropolitane più grandi del Mondo, tutte situate in India e nelle quali si è assunto che i consumi degli abitanti siano conformi a quelli di un giapponese medio. Fonte: (R. Wilson, 2013)
Fig.7 Densità di potenza media utilizzata in 17 delle 200 aree metropolitane più grandi del Mondo, tutte situate in India e nelle quali si è assunto che i consumi degli abitanti siano conformi a quelli di un giapponese medio. Fonte: (R. Wilson, 2013)

120 milioni di persone vivono in queste città. Ricoprirle interamente con pannelli fotovoltaici con fattore di capacità pari al 10% significherebbe ottenere meno della metà del loro fabbisogno energetico.
E guardate quel puntino in alto a destra: è Bombay. Questa città, per coprire tutto il suo fabbisogno energetico (Japanese style) da fonte solare [6], dovrebbe sfruttare quasi il 100% della radiazione solare che la colpisce – una prospettiva remota.
Questa altissima densità di popolazione è sistematicamente ignorata dagli ambientalisti occidentali che chiedono più “energia disseminata” quale soluzione ai problemi energetici dell’India.
In conclusione, entro il secolo corrente la maggior parte dell’umanità vivrà in grandi città densamente popolate. Se i cittadini di queste città raggiungeranno una qualità di vita maggiore sarà solo generando energia centralizzata in grandi quantità, e grazie a reti di trasmissione e distribuzione ottimizzate e ben sviluppate.
Qui non si tratta di preferenze ideologiche, ma di fare i conti con la dura realtà.

Fig.8Skyline di Città del Messico
Fig.8 Skyline di Città del Messico

Acknowledgments:

Questo post è una nostra rielaborazione, con integrazioni ed aggiornamenti, dell’articolo “The Future of Energy: Why Power Density Matters” di Robert Wilson, pubblicato su theenergycollective.com l’8 agosto 2013.

Note:

[1] Con “densità di potenza” si intende qui la “densità di potenza utilizzata”, ossia il rapporto tra il valore medio della potenza utilizzata annualmente da una data popolazione e la superficie di territorio occupata da tale popolazione.

[2] Per brevità chiameremo “densità di potenza” anche il valore medio della potenza generata/disponibile per metro quadrato di superficie occupata dagli impianti di produzione dell’energia elettrica. Alcuni chiamano questa grandezza derivata “densità di potenza areale” (areal power density).
Per ulteriori dettagli si vedano le note qui. Nel caso di fonte eolica, attenzione a non confondere la densità di potenza (output elettrico) con la potenza erogata dal vento per unità di superficie spazzata dalle pale degli aerogeneratori (input cinetico); e a non dimenticare che gli aerogeneratori devono essere disposti ad una distanza sufficiente gli uni dagli altri onde evitare che “si rubino il vento tra di loro”. (Per esempio gli esperti consigliano per la progettazione di un parco eolico di non posizionare gli aerogeneratori ad una distanza inferiore a 5 volte il diametro dei rotori – ovviamente se montiamo un solo aerogeneratore la densità di potenza erogata è notevolmente superiore; ma in questo caso stiamo parlando di energia a chilometro zero ad un livello local molto spinto.)

[3]David MacKay nel libro “Energia sostenibile – senza aria fritta” giunge ad una stima di 2 W/m2 come valore medio per impianti onshore su larga scala; altri studi più recenti sulla produzione degli impianti eolici di grosse dimensioni (sia onshore che offshore) riportano perlopiù valori medi in un range perfettamente conforme: 1-3 W/m2. Forniamo anche un esempio concreto, London Array, il parco eolico offshore più grande al Mondo in funzione dal 2013 nel mare di fronte alla foce del Tamigi: capacità 630 MW; area occupata 100 km2; fattore di capacità atteso 39%. Da cui: 630 MW / 100 km2 * 39% ≈ 2,5 W/m2. E questo con una locazione dell’impianto ottimale per quanto riguarda la ventosità.
Per ulteriori approfondimenti sui limiti fisici della generazione di elettricità da fonte eolica:

Lee M. Millera et al., “Two methods for estimating limits to large-scale wind power generation” – PNAS September 8, 2015 vol. 112 no. 36 pp. 11169-11174

Amanda S. Adams, David W. Keith, “Are global wind power resource estimates overstated?” – Environmental Research Letters, 25 February 2013, Volume 8, Number 1

[4]          Tipicamente i valori registrati nei parchi fotovoltaici di grandi dimensioni variano nell’intervallo 3-10 W/m2. L’anno scorso è uscito un report del MIT (“The Future of Solar Energy”) dove si dimostra che considerando il valore medio del soleggiamento sull’intera superficie degli Stati Uniti d’America il massimo teorico risulta essere pari a 15 W/m2. Per gli impianti CSP si stima di superare anche i 20 W/m2 su larga scala (in zone caratterizzate da particolare soleggiamento, per esempio i deserti). Paghiamo una pinta di birra (vel similia) a chiunque riesca a dimostrare – dati di produzione alla mano – che un parco fotovoltaico di grandi dimensioni è in grado di a generare mediamente (24/7) una potenza elettrica con una densità superiore a 20 W/m2.

[5]          Bisognerebbe mettere in conto tra le altre cose che oggi come oggi gli abitanti di Phoenix godono dell’efficiente fornitura di elettricità proveniente da Palo Verde. Questa centrale nucleare occupa complessivamente un’area di 1600 ettari e produce in media 29,25 TWh all’anno, con un fattore di capacità medio calcolato sulla nameplate capacity pari all’85% – da cui una densità di potenza > 200 W/m2, tenendo conto anche della superficie dei parcheggi per i dipendenti della centrale!

[6]          Per quanto riguarda il valore medio annuale della Direct Normal Irradiation, Bombay (Mombay) si trova nella fascia dei 1300-1500 kWh/m2, come si può vedere qui; mentre per quanto riguarda la Global Horizontal Irradiation si hanno in media circa 1900-2000 kWh/m2/anno, come si può vedere qui. Questo significa avere rispettivamente 148-171 W/m2 e 217-228 W/m2 di irradianza diretta normale ed orizzontale.