Quando si dice “fake news”

Ad imperitura vergogna.

repubblica_fakenews_1

Fonte: http://www.repubblica.it/esteri/2011/03/20/news/tokyo_capitale_in_agonia-13852633/

Per ulteriori dettagli consigliamo l’ottimo pezzo del prof. Mattia Butta: http://www.butta.org/?p=19600

Qui la descrizione sul “Wall of Shame”: http://www.jpquake.info/home/la-repubblica#TOC-2011-03-20

Annunci

La vittoria di Pirro delle rinnovabili tedesche

[come una transizione energetica a tappe forzate – o, meglio, drogate – sia per ora riuscita ad ottenere solo la caduta libera del prezzo dell’elettricità, maggiori costi per i consumatori finali e minore riduzione delle emissioni dei gas c.d. climalteranti]

Energia eolica in chiave espressionista
Fig. 1 Energia eolica in chiave espressionista

L’andamento dei prezzi per l’elettricità registrato dalla European Energy Exchange AG (EEX, Borsa Europea dell’Energia) di Lipsia parla chiaro. Mentre i consumatori tedeschi sono costretti a pagare sempre di più l’elettricità, le tariffe quotate sul mercato all’ingrosso da fonte carbone, gas e nucleare vanno nella direzione opposta da anni.

E a dirla tutta, le cose non andavano certo bene per E.ON, RWE, EnBW, Vattenfall, e centinaia di altre aziende di pubblica utilità, quando il prezzo era di 35 €/MWh, due anni fa. Ora queste aziende possono a malapena tenere il passo con continui e drastici tagli per risparmiare sui costi.

Con l’energia elettrica prodotta che viene venduta ad un prezzo maledettamente basso, la produzione delle centrali elettriche convenzionali tedesche quest’anno avrà un valore di appena 8,7 miliardi di euro. Circa un terzo del valore di 5 anni fa. Mentre tale produzione “convenzionale” costituisce ancora circa due terzi del totale dell’elettricità tedesca.

E le compagnie energetiche non si limitano a piangere miseria, hanno iniziato a chiudere gli impianti meno redditizi: l’Agenzia Federale delle Reti [1] ha già registrato 57 casi, ne sono attesi molti altri.

Tuttavia non è tutto così semplici e lineare. Per esempio, è curioso notare come in 10 anni siano velocemente cambiate le cose all’ombra della Energiewende. Infatti, nel 2006, quando la Germania aveva già da tempo iniziato la sua transizione energetica, la RWE lanciò il più grande programma di investimenti della sua storia, pari a circa 15 miliardi di euro: mentre i tedeschi installavano a tutto spiano pannelli fotovoltaici sui tetti, RWE calava la pietra angolare di centrali elettriche a carbone gigantesche. E nel tempo le centrali a gas naturale sono state costruite perfino su di una scala maggiore e dietro esplicita richiesta dei legislatori. Quest’ultimo tipo di impianti, essendo flessibili, ad accensione rapida e a spegnimento rapido, è considerato infatti il complemento perfetto alla produzione da fonti rinnovabili che dipende dalle condizioni atmosferiche.

Oggi questo “complemento perfetto” non è più così perfetto, perché al beneficio tecnico si contrappone un costo economico deleterio. Quella che poteva essere vista come una collaborazione tra “nemici” è ora una vera e propria battaglia, ad armi impari.

Prima però di approfondire i dettagli economici riteniamo sia opportuno analizzare quelli tecnici – vale a dire i risultati concreti della Energiewende in termini di sostituzione delle fonti per la produzione di energia elettrica.

Abbiamo visto che i gestori di centrali elettriche convenzionali lamentano grosse perdite in Germania; vuol dire che il piano sta funzionando? Non fidandoci delle lagne dei gestori di cui sopra (gestori che tra le altre cose operano largamente anche nel settore delle FER), abbiamo pensato bene di sentire altre voci.

In primo luogo abbiamo chiesto lumi a chi della “lotta ai cambiamenti climatici” ne ha fatto una professione, vale a dire il Fraunhofer-Institut für Solare Energiesysteme (Fraunhofer ISE), rinomato istituto di ricerca di Friburgo, che tra le altre cose fornisce aggiornamenti quasi in tempo reale sulla produzione di elettricità in Germania, su import ed export, e molto altro ancora. E a chi ne ha fatto una passione come il think tank Carbon Brief.

Incrociando i dati raccolti abbiamo subito notato un’inversione di tendenza nel settore elettrico, scaturita anche dal drastico ridimensionamento della flotta delle centrali nucleari operative, attuato cinque anni fa per decreto federale. Per ovvi motivi, abbiamo deciso di chiamare “Effetto Fukushima” questa evidente frattura della transizione energetica tedesca. In Fig. 2 il grafico è di per sé eloquente: il periodo di maggiore efficacia della Energiewende (2002-2010) dura fino alla decisione “precipitosa” del Governo federale di “uscire dal nucleare”, con effetto immediato per metà delle unità allora operative. A partire dal 2011 parte la rimonta delle centrali termoelettriche convenzionali, guidata dal carbone fossile.

“Effetto Fukushima” sulla Energiewende. Nel periodo 2002-2010, antecedente la decisione “precipitosa”del Governo federale inerente il phase-out nucleare, il “parco convenzionale” delle centrali termoelettriche in Germania dava chiari segnali di ridimensionamento. Subito dopo il ritiro anticipato di circa la metà della capacità di generazione elettronucleare risulta impressionante il cambiamento di tendenza, con la “rimonta” guidata dal carbone (nelle due “versioni”, hard e brown). Si noti inoltre che in entrambe le pile i maggiori incrementi netti riguardano impianti caratterizzati da valori del fattore di carico particolarmente bassi. Fonte: elaborazione CNeR su dati Fraunhofer ISE 2016 e Carbon Brief 2016
Fig. 2 “Effetto Fukushima” sulla Energiewende. Nel periodo 2002-2010, antecedente la decisione “precipitosa”del Governo federale inerente il phase-out nucleare, il “parco convenzionale” delle centrali termoelettriche in Germania dava chiari segnali di ridimensionamento. Subito dopo il ritiro anticipato di circa la metà della capacità di generazione elettronucleare risulta impressionante il cambiamento di tendenza, con la “rimonta” guidata dal carbone (nelle due “versioni”, hard e brown). Si noti inoltre che in entrambe le pile i maggiori incrementi netti riguardano impianti caratterizzati da valori del fattore di carico particolarmente bassi. Fonte: elaborazione CNeR su dati Fraunhofer ISE 2016 e Carbon Brief 2016

Nel grafico sono considerati i valori cumulativi delle variazioni di capacità di generazione netta, ossia i risultati della somma algebrica della capacità di generazione elettrica dei nuovi impianti entrati in funzione (o rimessi in funzione, non abbiamo controllato) meno quella degli impianti disattivati nel medesimo periodo.

Naturalmente questo “Effetto Fukushima” è una semplificazione, non fosse altro perché mentre è assai facile spegnere velocemente una o più centrali nucleari, le nuove centrali termoelettriche a combustibili fossili non si costruiscono in un giorno. Tuttavia, la parziale “sostituzione” del combustibile fissile con quello fossile è in pratica avvenuta, ed i suoi effetti li abbiamo visualizzati con altri grafici che trovate più sotto, concernenti le emissioni di tonnellate di anidride carbonica equivalente. Inoltre, da un piano di transizione energetica ci si aspetterebbe che, anche se non vengono interrotte definitivamente tutte le nuove costruzioni di impianti a combustibili fossili, almeno non si verifichi un’inversione di tendenza come quella evidenziata in Fig. 2. Guardando separatamente i valori “in ingresso ed in uscita”, ed entrando maggiormente nel dettaglio, si scoprono infatti variazioni tali (per esempio, + 6,9 GW da hard coal, +2,7 GW da brown coal o +2,2 GW da natural gas nel periodo 2011-2015) per cui risulta davvero difficile ritenere la Energiewende un piano accurato di riduzione della dipendenza dai combustibili fossili del settore elettrico tedesco. Come avevamo già accennato nel nostro precedente post, è evidente che non c’è alcuna seria intenzione di dismettere il “parco convenzionale” delle centrali termoelettriche. Inoltre le nuove installazioni di impianti alimentati da FER stanno dimostrando di essere perfettamente inutili allo scopo.

In evidenza dai grafici in Fig. 2: valori cumulativi delle variazioni di capacità di generazione netta delle centrali termoelettriche in Germania, ottenuti sommando tutti i gigawatt delle nuove installazioni e sottraendo tutti quelli degli impianti disconnessi dalla rete elettrica. Periodi di riferimento: 2011-2015 e 2002-2010
Tab. 1 In evidenza dai grafici in Fig. 2: valori cumulativi delle variazioni di capacità di generazione netta delle centrali termoelettriche in Germania, ottenuti sommando tutti i gigawatt delle nuove installazioni e sottraendo tutti quelli degli impianti disconnessi dalla rete elettrica. Periodi di riferimento: 2011-2015 e 2002-2010

C’è anche un altro problema. Le nuove centrali termoelettriche convenzionali sono destinate ad essere esercite con un fattore di carico spaventosamente basso, vale a dire devono produrre molta meno elettricità di quella che sarebbero in grado di generare, e debbono essenzialmente fornire la copertura degli sbalzi non programmabili della produzione da fonti di energia rinnovabile che non siano idroelettrico e bioenergie (biomasse e rifiuti urbani). Pertanto si tratta di impianti ad alto rischio di lavorare in perdita, con tutte le conseguenze economiche del caso.

In Tab. 1 abbiamo riportato per i due periodi in esame (prima e dopo Fukushima) i valori delle variazioni della capacità netta delle centrali termoelettriche includendo anche quelle a biomasse, che pur essendo caratterizzate da un fattore di capacità teorico inferiore a quello delle centrali a combustibili fossili (per non parlare di quelle nucleari) sono comunque da considerarsi impianti a fonte non aleatoria, quindi utili per un carico di base della rete elettrica e per evitare black out. La crescita degli impianti a biomasse è notevole. Tuttavia i meccanismi domanda-offerta, ossia la necessità di fornire tutta l’elettricità richiesta dai consumatori nell’esatto momento in cui ne hanno bisogno non è faccenda semplice; per cui anche questa crescita vertiginosa e non taglieggiata [modalità ironia attivata] non è sufficiente.

Abbiamo analizzato la produzione interna lorda (PIL) e la copertura dei consumi interni lordi (CIL) di elettricità con i grafici in Fig. 3. Questa volta attingendo i dati direttamente da chi la Energiewende la deve “accudire”, ossia il Bundesministerium für Wirtschaft und Energie (BMWi), ed il gruppo di ricerca AG Energiebilanzen e.V. (AGEB), che vede riunite diverse associazioni di industriali ed economisti.

Nel primo grafico, con una scelta non casuale dei colori, abbiamo messo in evidenza il summenzionato “Effetto Fukushima”, ossia il fatto che tagliando la produzione elettronucleare la crescita di quella da FER non sia andata ad intaccare sensibilmente il ruolo dei combustibili fossili. E questo nonostante la sottoproduzione delle relative centrali termoelettriche.

033

034

a) produzione interna lorda (PIL) di elettricità in Germania dal 1990 al 2015; b) ripartizione della PIL in quattro anni fondamentali per la Energiewende; c) copertura consumi interni lordi (CIL) di elettricità in Germania negli stessi anni. Fonte: elaborazione CNeR su dati AGEB 2016
Fig. 3 a) produzione interna lorda (PIL) di elettricità in Germania dal 1990 al 2015; b) ripartizione della PIL in quattro anni fondamentali per la Energiewende;
c) copertura consumi interni lordi (CIL) di elettricità in Germania negli stessi anni. Fonte: elaborazione CNeR su dati AGEB 2016

La scelta dei grafici in Fig. 3b rimarca questo fatto: a partire dal 1990 la porzione di torta low carbon è cresciuta costantemente; ma nel passaggio dal 2002 al 2012 il rallentamento è significativo rispetto al decennio precedente, essendosi quasi dimezzata la parte più grande (nucleare) e solo triplicata quella più piccola (FER); quindi la “torta” al 2015 pur essendo “più bella” di quella al 2002 fa sorgere spontanea una domanda riguardo al mancato ruolo del nucleare. Come sarebbe andata se…? Cercheremo di rispondere fra qualche riga.

Storico della generazione di elettricità da fonti rinnovabili in Germania. Dal 2002 al 2015 l’incremento è stato pari al 415%, per la maggior parte dovuto ad eolico e biomasse/rifiuti di vario tipo. Fonte: BMWi 2016
Fig. 4 Storico della generazione di elettricità da fonti rinnovabili in Germania. Dal 2002 al 2015 l’incremento è stato pari al 415%, per la maggior parte dovuto ad eolico e biomasse/rifiuti di vario tipo. Fonte: BMWi 2016

Esaminando il dettaglio della composizione delle FER (Fig. 4) si nota in primis la crescita di fotovoltaico ed eolico e successivamente il ruolo preponderante di quest’ultimo. Vale la pena ricordare che entrambe queste fonti sono aleatorie. La produzione di elettricità da fonte solare dipende molto dalle condizioni meteorologiche, ovvero da soleggiamento ed insolazione, con variazioni stagionali notevoli, quella da eolico dipende totalmente dalle condizioni atmosferiche: se non tira vento o se ne tira troppo la produzione semplicemente si ferma.

Variazione giornaliera della potenza fotovoltaica in una giornata autunnale in Germania. Al picco, nel momento di maggiore produttività dei circa 39 GW installati sono produttivi poco più di 6 GW, l’84% della potenza è inutilizzabile per semplici cause naturali. I contribuenti ringraziano. Fonte: screenshot di uno dei grafici interattivi della SMA Solar Technology AG
Fig. 5 Variazione giornaliera della potenza fotovoltaica in una giornata autunnale in Germania. Al picco, nel momento di maggiore produttività dei circa 39 GW installati sono produttivi poco più di 6 GW, l’84% della potenza è inutilizzabile per semplici cause naturali. I contribuenti ringraziano. Fonte: screenshot di uno dei grafici interattivi della SMA Solar Technology AG

Quando invece le condizioni meteorologiche sono favorevoli le fonti aleatorie danno luogo a picchi di produzione ovviamente proporzionali in altezza all’ammontare della capacità di generazione delle installazioni; l’ampiezza dei picchi dipende invece dalla durata, nell’arco di una giornata, di tali condizioni favorevoli. Nel caso del fotovoltaico, è doveroso notare come i valori di massima produzione diurna, soprattutto nel periodo autunnale e invernale, siano largamente inferiori alla potenza nominale degli impianti, a causa della maggiore inclinazione dei raggi solari (Fig. 5). I picchi di produzione da eolico e fotovoltaico e l’ampiezza degli stessi possono inoltre essere sfasati rispetto all’andamento della domanda di energia elettrica (Fig. 6).

Andamento del fabbisogno giornaliero e della produzione elettrica in Germania, divisa per fonti per due tipiche giornate autunnali, rispettivamente feriale e festiva. Si noti la differenza di circa 20 GW di potenza richiesta sulla rete tra le ore diurne e notturne, con un picco in corrispondenza delle ore di massimo soleggiamento ⎼ soddisfatto tuttavia solo in minima parte dalla produzione fotovoltaica ⎼ e un secondo picco, meno marcato, nelle fascia oraria serale. Fonte: screenshot di uno dei grafici interattivi del sito agora-energiewende.de
Fig. 6 Andamento del fabbisogno giornaliero e della produzione elettrica in Germania, divisa per fonti per due tipiche giornate autunnali, rispettivamente feriale e festiva. Si noti la differenza di circa 20 GW di potenza richiesta sulla rete tra le ore diurne e notturne, con un picco in corrispondenza delle ore di massimo soleggiamento ⎼ soddisfatto tuttavia solo in minima parte dalla produzione fotovoltaica ⎼ e un secondo picco, meno marcato, nelle fascia oraria serale. Fonte: screenshot di uno dei grafici interattivi del sito agora-energiewende.de

 

Tale “mancanza di sintonia” è illustrata anche nel grafico in Fig. 3c. Qui i valori percentuali per l’export dell’energia elettrica sono negativi perché si tratta in pratica di una percentuale della produzione di elettricità che uscendo dai confini della rete elettrica tedesca non va a coprire i consumi interni lordi (CIL). Viceversa, la percentuale dell’import ha valori positivi, perché considerata come una “aggiunta” alla PIL fatta al momento giusto, ossia tutte le volte che per motivi vari l’offerta interna non risponde pienamente alla domanda interna. Non è possibile dimostrare che tale disaccoppiamento tra domanda ed offerta interna sia in gran parte o interamente attribuibile alla aleatorietà delle FER ‒ almeno con i dati in nostro possesso. Ciononostante, dalla visione d’insieme dei grafici in Fig. 3 emerge chiaramente che nello stesso periodo di tempo in cui è aumentata la quota PIL da FER è aumentata anche la quota percentuale esportata.

Si tratta di semplice correlazione, e non di causa-effetto? Rimane il dubbio, ma anche il fatto che dalla metà del 2012 la centrale nucleare di Temelin in Repubblica Ceca opera a circa 100 MW(e) al di sotto della sua capacità [4], per evitare problemi di sicurezza della rete causati dagli sbalzi di tensione generati dalla produzione di elettricità da FER in Germania. Dopo la Repubblica Ceca anche la Polonia ha installato sul proprio confine con la Germania dei particolari trasformatori di potenza [5] in grado di bloccare il dumping elettrico [6]; Francia, Olanda e Belgio ne erano già forniti.

Per completare il quadro tecnico manca ora solo un ultimo tassello, in altre parole occorre rispondere alla domanda delle domande: l’aumento significativo del ruolo delle FER nel settore elettrico tedesco ha comportato una riduzione altrettanto significativa delle emissioni di gas climalteranti?

In questo caso ci siamo rivolti ai “cattivi”, ossia a chi una certa esperienza nel campo se l’è fatta da qualche lustro: British Petroleum. A parte gli scherzi, la BP fornisce anche interessanti raccolte dati e proiezioni sul futuro energetico del Mondo, utilizzando diverse fonti ufficiali, tra cui i ministeri competenti dei vari Paesi.

Prima di snocciolare tutti i numeri, partiamo da una considerazione di fondo: lo “spartiacque” temporale per analizzare gli effetti delle politiche energetiche della Germania è il 2001, anno nel quale entrò effettivamente in vigore la legge federale a sostegno delle energie rinnovabili approvata dalle Camere l’anno precedente (la EEG, Erneuerbare-Energien-GesetzRenewable Energy Sources Act): la spinta aggressiva del solare e dell’eolico al motore della Energiewende iniziò proprio all’alba del XXI secolo.
Tuttavia, l’andamento delle emissioni di gas climalteranti in Germania negli ultimi 50 anni (Fig. 7a) non lascia spazio a dubbi: una transizione energetica “low-carbon” era stata avviata nei fatti già nella prima metà degli anni ‘70, quando la crisi petrolifera mondiale costrinse i Paesi occidentali a rivedere i propri consumi energetici, con un progressivo ridimensionamento del ruolo dei petrolio e dei suoi derivati, cosa che in Germania avvenne grazie al boom del settore elettronucleare e ad un impiego più massiccio del gas come combustibile per il riscaldamento e la produzione di elettricità [7].  In particolare, proprio grazie all’espansione della flotta dei reattori, se nel 1973 la Germania dipendeva per oltre il 98% dai combustibili fossili, tale valore si è ridotto progressivamente negli anni arrivando nel 2001 all’86%, quando la produzione da fonte nucleare copriva più dell’11% del fabbisogno energetico, ovvero (con più di 170 TWh) quasi il 30% dei consumi elettrici.

039

040

041

Emissioni di anidride carbonica da utilizzo di combustibili fossili per tutti i settori economici. Germania a confronto con gli altri Paesi membri dell’Organizzazione per la Cooperazione e lo Sviluppo Economico (OCSE-OCED). a) Storico delle emissioni per la sola Germania (1965-2015). Le linee rosse disegnate evidenziano come l’effetto della Energiewende abbia lasciato immutata la tendenza consolidata nel periodo 1973-2001. b) Storico delle emissioni per la sola Germania (2002-2015). Le linee rosse disegnate evidenziano variazioni consistenti in controtendenza associabili a particolari periodi di transizione economica, per esempio la crisi del 2008-2009 con la conseguente drastica riduzione dei consumi energetici, e la successiva lenta ripresa. c) Storico delle emissioni cumulative dei Paesi OCSE (2002-2015). Anche qui le linee rosse disegnate evidenziano la drastica riduzione associabile alla crisi economica del 2008-2009. La sostanziale riduzione dopo l’iniziale ripresa del 2010 è associabile all’effetto combinato di maggiore efficientamento dei consumi energetici e lenta ripresa della produzione industriale. d) Peso percentuale delle emissioni della Germania sul totale dei Paesi OCSE. Ultimi due anni a confronto: cresce il ruolo della Germania! Fonte: elaborazione CNeR su dati BP 2016 [8]
Fig. 7 Emissioni di anidride carbonica da utilizzo di combustibili fossili per tutti i settori economici. Germania a confronto con gli altri Paesi membri dell’Organizzazione per la Cooperazione e lo Sviluppo Economico (OCSE-OCED). a) Storico delle emissioni per la sola Germania (1965-2015). Le linee rosse disegnate evidenziano come l’effetto della Energiewende abbia lasciato immutata la tendenza consolidata nel periodo 1973-2001. b) Storico delle emissioni per la sola Germania (2002-2015). Le linee rosse disegnate evidenziano variazioni consistenti in controtendenza associabili a particolari periodi di transizione economica, per esempio la crisi del 2008-2009 con la conseguente drastica riduzione dei consumi energetici, e la successiva lenta ripresa. c) Storico delle emissioni cumulative dei Paesi OCSE (2002-2015). Anche qui le linee rosse disegnate evidenziano la drastica riduzione associabile alla crisi economica del 2008-2009. La sostanziale riduzione dopo l’iniziale ripresa del 2010 è associabile all’effetto combinato di maggiore efficientamento dei consumi energetici e lenta ripresa della produzione industriale. d) Peso percentuale delle emissioni della Germania sul totale dei Paesi OCSE. Ultimi due anni a confronto: cresce il ruolo della Germania! Fonte: elaborazione CNeR su dati BP 2016 [8]

É da notare come oltre al petrolio (-19%) anche il carbone abbia visto ridursi considerevolmente la propria incidenza sul paniere energetico (-61%), andando ad impattare in misura molto minore sulle emissioni di carbonio associate al suo utilizzo per la produzione di elettricità.  Di conseguenza, dal 1973 al 2001, a consumi complessivi sostanzialmente invariati – nonostante un PIL in forte crescita (Fig. 8), segno di una maggiore attenzione per il risparmio e l’efficienza energetica – le emissioni tedesche di CO2eq sono calate di quasi un quarto! Tutto questo a fronte di un contributo delle energie rinnovabili ancora del tutto marginale, pari nel 2001 a meno del 3% sul totale, di cui quasi due terzi di origine idroelettrica.

Cosa è accaduto negli anni successivi, fino ai giorni nostri? Nonostante il già menzionato aumento del contributo delle FER, le emissioni sono sì ulteriormente calate (-13% rispetto al 2001), ma senza notevoli variazioni del tasso annuale: in altre parole, a fronte di investimenti economici senza precedenti, il calo ha mantenuto lo stesso trend lineare decrescente dei trent’anni precedenti.

Prodotto Interno Lordo della Germania, nel periodo 1973-2015. Elaborazione di Google aggiornata al 7/10/2016 su dati della Banca Mondiale
Fig. 8 Prodotto Interno Lordo della Germania, nel periodo 1973-2015. Elaborazione di Google aggiornata al 7/10/2016 su dati della Banca Mondiale

Analizzando nel dettaglio l’andamento nell’intervallo 2002-2015 (Fig. 7b), emerge un dato ancora più significativo: negli ultimi sette anni le emissioni si sono sostanzialmente stabilizzate (in controtendenza rispetto all’insieme dei paesi OCSE, Fig. 7c) in un arco temporale in cui anche il prodotto interno lordo tedesco è rimasto pressoché invariato. Qualcosa non torna: il disaccoppiamento tra le emissioni (in calo, -22%) e il PIL (in crescita, +500%), che aveva caratterizzato il periodo tra il 1973 e il 2001, avrebbe dovuto determinare in questi sette anni di stagnazione una riduzione delle emissioni molto più significativa di quella effettivamente registrata. Cosa è andato storto?
La risposta la conosciamo. La crescita delle energie rinnovabili ha eroso solo in minima parte il contributo delle fonti fossili a più elevato tasso di emissioni, andando piuttosto a comprimere sensibilmente la produzione elettrica low carbon nucleare. Per convincerci ulteriormente di quanto questo aspetto abbia effettivamente influito negativamente sulla riduzione delle emissioni, proviamo a formulare una stima numerica, ipotizzando uno scenario alternativo a quello odierno: come sarebbero andate le cose se la percentuale di copertura da fonte nucleare dei consumi interni lordi fosse rimasta quella del 2002?
In quell’anno il contributo nucleare al fabbisogno elettrico era pari al 28%, che se riferito al 2015 equivarrebbe a circa 168 TWh – un valore che la flotta di reattori tedeschi ha dimostrato più volte di essere in grado di raggiungere tra il 1999 e il 2006. Supponendo di sottrarre tutta questa produzione elettrica alle centrali alimentate a carbone e lignite, risulta che le emissioni di CO₂eq nel 2015 sarebbero state inferiori di circa 165 milioni di tonnellate rispetto al valore effettivamente misurato [9]. Si tratta di una valore inferiore del 32% rispetto al dato del 2001! Il dato reale, lo ricordiamo, certifica invece una riduzione di soli 13 punti percentuali in questo intervallo temporale.

Emissioni di anidride carbonica prodotte dal consumo di combustibili fossili in Europa nel 2015. I consumi si riferiscono a tutti i settori, non solo a quello elettrico. Podio: Germania, Regno Unito, Italia
Fig. 9 Emissioni di anidride carbonica prodotte dal consumo di combustibili fossili in Europa nel 2015. I consumi si riferiscono a tutti i settori, non solo a quello elettrico. Podio: Germania, Regno Unito, Italia
Emissioni di gas-serra da tutti i settori economici (escluso Land Use, Land-Use Change and Forestry, ossia consumo e cambio d’uso del suolo, forestazione ed attività simili). Valori cumulati nel periodo 2000-2014 dai maggiori Paesi europei. Germania solidamente al primo posto, l’Italia agguanta il terzo posto per un soffio. Fonte: elaborazione CNeR su dati OECD.Stat estratti il 18 Nov 2016 07:25 UTC (GMT)
Fig. 10 Emissioni di gas-serra da tutti i settori economici (escluso Land Use, Land-Use Change and Forestry, ossia consumo e cambio d’uso del suolo, forestazione ed attività simili). Valori cumulati nel periodo 2000-2014 dai maggiori Paesi europei. Germania solidamente al primo posto, l’Italia agguanta il terzo posto per un soffio. Fonte: elaborazione CNeR su dati OECD.Stat estratti il 18 Nov 2016 07:25 UTC (GMT)

La realtà dei fatti è fotografata dai grafici che mettono a confronto  le emissioni di CO2eq dei diversi Paesi europei (Fig. 9 e 10). Da questo punto di vista, la crescita del ruolo delle FER nel mix energetico tedesco non può che essere considerata una vittoria di Pirro.

Anzi, volendo essere spietatamente realisti, ovvero considerando la questione anche sotto l’aspetto economico, lo scenario futuro più probabile  che si delinea sotto i nostri occhi è quello di un loose-loose. Il sistema di sovvenzioni che ha sorretto l’accelerata delle FER nel settore elettrico tedesco potrebbe presto infatti dimostrarsi economicamente non più sostenibile.
Vediamo come stanno già ora le cose. Quando nel 2000 fu approvata la legge federale sulle FER, fu garantito agli investitori in impianti eolici e solari che avrebbero potuto immettere ogni chilowattora prodotto nella rete ad un prezzo fisso concordato. Per il libero gioco delle forze di mercato è stata una catastrofe, per ragioni che sono evidenti.  Oggi un megawattora di elettricità da un nuovo parco eolico su terraferma è remunerato con € 85 – vale a dire quattro volte il prezzo di mercato. I produttori di elettricità da fonte solare ricevono € 110 per megawattora – ben cinque volte il valore di mercato. L’elettricità dagli aerogeneratori installati in mare è pagata 150 €/MWh – circa sette volte il prezzo di mercato.

E quanto costa l’elettricità per il consumatore finale? In media, le famiglie stanno pagando circa 28 centesimi per chilowattora – vale a dire 280 €/MWh, più di 10 volte il prezzo sul mercato. Un affare!

Storico della composizione del costo medio (c€/kWh) dell’elettricità per un nucleo famigliare tipo (3.500 kWh/anno) in Germania. Fonte: elaborazione CLEW su dati BDEW, 2016
Fig. 11 Storico della composizione del costo medio (c€/kWh) dell’elettricità per un nucleo famigliare tipo (3.500 kWh/anno) in Germania. Fonte: elaborazione CLEW su dati BDEW, 2016

Dove va la differenza? I gestori della rete ricevono, se va bene, un quarto del prezzo dell’energia elettrica pagato dal consumatore finale. Una situazione alla quale noi italiani siamo, come dire, abituati. E forse il nostro lettore medio avrà già intuito il perché della suddetta discrepanza. Tuttavia, su tali questioni è sempre meglio scendere nel dettaglio; abbiamo quindi riportato in Fig. 11 un grafico del Clean Energy Wire (CLEW), uno dei più importanti think tank sulle politiche energetiche tedesche, elaborato a partire dai dati più recenti della Bundesverband der Energie und Wasserwirtschaft (BDEW) [2].

Unendo ai factsheet del CLEW quelli di Agora Energiewende (altro think tank da seguire attentamente), è possibile aggiungere ulteriori dettagli. Ecco dunque la situazione a gennaio 2016, quando per un nucleo famigliare tipo in Germania il costo di un kWh di elettricità (circa 0,29 euro) era composto come segue:

21,3%  cost of power supply (costi di fornitura e margine di profitto per il fornitore)

24,6%  grid charges (costi fissi per utilizzo della rete elettrica stabiliti dal gestore della medesima – i.e. autorità federale di riferimento)

22,2%  renewable energy surcharge (ammontare dei sussidi e/o incentivi stabiliti dalla EEG per garantire l’economicità degli impianti da fonti rinnovabili)

16%     sales tax (imposta analoga all’I.V.A.)

7,2%    electricity tax (tassa sull’utilizzo dell’elettricità, detta anche “tassa ecologica”)

5,8%    concession levy (tributo basato sull’utilizzo del suolo pubblico tramite le linee di trasmissione e distribuzione da parte del fornitore per raggiungere il consumatore)

0,1%    levy for offshore liabilities (tributo per compensare i costi di gestione della rete dovuti a problemi di connessione con gli aerogeneratori installati in mare)

1,5%    surcharge for Combined Heat and Power plants (ammontare dei sussidi e/o incentivi stabiliti dalla EEG per garantire l’economicità degli impianti a cogenerazione)

1,3%    levy for grid charges to large users (tributo per compensare l’esenzione dei costi di gestione della rete garantita ai grandi consumatori – i.e. industrie, servizi pubblici, ecc.)

Costo medio dell’elettricità per i consumatori domestici (nuclei familiari con consumi annui compresi tra i 2.500 kWh ed i 5.000 kWh). Secondo semestre 2015, Europa. Valori in euro. Fonte Eurostat
Fig. 12 Costo medio dell’elettricità per i consumatori domestici (nuclei familiari con consumi annui compresi tra i 2.500 kWh ed i 5.000 kWh). Secondo semestre 2015, Europa. Valori in euro. Fonte Eurostat
Consumi medi e bollette elettriche in alcuni Paesi c.d. sviluppati (valori approssimativi per il periodo 2011-2015, anche a causa del cambio valuta) – si noti che, dato l’elevato costo del chilowattora, la bolletta degli italiani è la meno cara della lista solo grazie ai bassi consumi elettrici. É importante sottolineare che i consumi pro-capite di elettricità, in Italia, sono inferiori alla media europea in quanto si ricorre maggiormente al gas per uso domestico (cottura cibi e riscaldamento). Fonte: elaborazione CNeR su dati Eurostat e Agora Energiewende/ e EI New Energy, Vol. III, No. 28
Fig. 13 Consumi medi e bollette elettriche in alcuni Paesi c.d. sviluppati (valori approssimativi per il periodo 2011-2015, anche a causa del cambio valuta) – si noti che, dato l’elevato costo del chilowattora, la bolletta degli italiani è la meno cara della lista solo grazie ai bassi consumi elettrici. É importante sottolineare che i consumi pro-capite di elettricità, in Italia, sono inferiori alla media europea in quanto si ricorre maggiormente al gas per uso domestico (cottura cibi e riscaldamento). Fonte: elaborazione CNeR su dati Eurostat e Agora Energiewende/ e EI New Energy, Vol. III, No. 28

In sostanza, i consumatori tedeschi medio-piccoli debbono pagare tutte le distorsioni del mercato elettrico. E va sottolineato il fatto che i gestori della rete sono autorizzati a passare al cliente l’intera differenza tra i costi elevati di remunerazione dell’energia elettrica “verde” e il prezzo di mercato. Più basso è il prezzo di mercato, maggiore è tale discrepanza, nota appunto come “prelievo EEG”, che quest’anno ha già superato ampiamente i 6 centesimi di euro per chilowattora. Complessivamente, i “prelievi EEG” nel 2016 dovrebbero sfiorare i 23 miliardi di euro (stima sulle attuali quotazioni EEX); mentre l’elettricità “verde” prodotta dovrebbe avere un valore inferiore ai 4 miliardi di euro.

Ecco cosa intendevamo con “corpo” quando abbiamo scritto nel nostro precedente post sulla Energiewende che la Germania si è dedicata “anima e corpo” alla sua transizione energetica: i prezzi dell’elettricità per i consumatori sono tra i più alti d’Europa (Fig. 12 e 13)!

Va aggiunto che la prima stima completa dei costi della Energiewende al 2025 risulta pari a oltre 520 miliardi di euro per il solo settore elettrico. Questa cifra interessante viene da un report commissionato all’Università di Düsseldorf, precisamente al Düsseldorf Institute for Competition Economics (DICE), per conto della Initiative New Social Market Economy (INSM), ed è composta per il 78% dal “prelievo EEG”, mentre l’espansione delle reti di trasmissione e distribuzione vale l’11% [3].

Di fronte all’evidenza di costi tanto elevati sappiamo bene quanto sia forte la tentazione di obiettare che in fondo tutto ha un costo e che l’ottenimento di un risultato ecologicamente sostenibile quasi non ha prezzo. Tuttavia, attenzione, perché ogni transizione energetica non solo ha un costo economico ma anche uno ecologico, dato che per usare una metafora “i pannelli fotovoltaici non crescono sugli alberi e gli aerogeneratori non spuntano come i funghi”.

Inoltre, di quale risultato ecologico stiamo parlando? Per favore tornate alla Fig. 9! Forse esiste un commento più appropriato per quel grafico, noi non riusciamo a trovare che questo: ad oggi la Energiewende si è rivelata costosamente inutile.

Energia fotovoltaica in chiave surrealista
Fig. 14 Energia fotovoltaica in chiave surrealista

(continua…)

Note:

[1]       Bundesnetzagentur, autorità tedesca per il mercato dell’energia elettrica, del gas, delle telecomunicazioni, delle poste e delle ferrovie.

[2]       Sorta di consorzio federale per la gestione delle forniture energetiche e della rete idrica.

[3]       Fonte: Comunicato stampa della Initiative Neue Soziale Marktwirtschaft e relativi allegati, consultabile al link http://www.insm.de/insm/Presse/Pressemeldungen/Pressemeldung-Studie-EEG.html

[4]       Comunicazione della CEPS, gestore di rete ceco, come riportato dalla World Nuclear Association qui: http://www.world-nuclear.org/information-library/energy-and-the-environment/energiewende.aspx

[5]       Il termine tecnico è Quadrature booster (anche phase-shifting transformer, o phase angle regulator, se made in USA). Questi trasformatori regolano lo sfasamento tra la tensione in ingresso e quella in uscita di una linea di trasmissione elettrica, controllando così la quantità di potenza attiva (active power, o real power) che vi può fluire. Fonte: https://en.wikipedia.org/wiki/Quadrature_booster

https://en.wikipedia.org/wiki/AC_power#Real_power

[6]       Nel linguaggio economico, il dumping rappresenta la vendita all’estero di un bene/servizio a prezzi inferiori rispetto a quelli praticati sul mercato interno.

[7]       Prendendo in considerazione l’intero ciclo di vita di un impianto di produzione di energia elettrica (Life Cycle Assessment), il gas è tra tutte le fonti fossili quella a minor tasso di emissioni – circa la metà rispetto a petrolio e carbone – a parità di elettricità prodotta.

Fonte: IPCC SRREN, Special Report on Renewable Energy Sources and Climate Mitigation, http://srren.ipcc-wg3.de/report/IPCC_SRREN_Full_Report.pdf

[8]       I dati sulle emissioni di anidride carbonica registrati dalla BP riguardano solo la post-combustione di carbone fossile, gas, petrolio e derivati, e si basano sui Default CO₂ Emissions Factors for Combustion dell’IPCC (2006). Una spiegazione del metodo di calcolo di tali emissioni è consualtibile al seguente link: http://www.bp.com/content/dam/bp/pdf/energy-economics/statistical-review-2016/bp-statistical-review-of-world-energy-2016-carbon-emissions-methodology.pdf

[9]       Per i calcoli abbiamo utilizzato le mediane dei tassi di emissione per unità di corrente elettrica generata (gCO2/kWh), valutati sul ciclo di vita degli impianti e del combustibile.  Dalla più recente pubblicazione dell’IPCC sul tema, i dati relativi alle centrali a carbone e a quelle nucleari sono rispettivamente 1001 gCO2 /kWh e 16 gCO2/kWh.

Un nuovo coperchio per Chernobyl

[27 novembre 2016, 30 anni e 7 mesi dopo il terribile incidente, ecco il Nuovo Confinamento Sicuro]

025

Abbastanza alto da poter ospitare la cattedrale di Notre Dame de Paris, ora copre e sigilla ulteriormente le rovine di Chernobyl, già sepolte nel famoso “sarcofago”. Il nuovo “coperchio” elimina i punti deboli di quello vecchio ed aumenta significativamente il livello di sicurezza delle aree adiacenti. Cambia inoltre radicalmente l’aspetto complessivo di uno dei siti più famosi al Mondo, ed è progettato per rimanere lì almeno 100 anni.

Un intero paesaggio ne è modificato per sempre. Era il paesaggio che ha fatto da sfondo a storie di dolore, angoscia, rabbia, abbandono, amarezza, ma che ha anche alimentato nel tempo paure esagerate o addirittura infondate, sentimenti contrastanti di rifiuto e curiosità, e purtroppo molte sterili polemiche. Potrà ora finalmente lasciare spazio ad altro nell’immaginario collettivo?

026

In 30 anni, dalle condizioni di lavoro estreme dell’emergenza iniziale si è passati ad una routine piuttosto insolita: non tutti gli abitanti della piccola cittadina omonima se ne sono andati; le altre unità della centrale nucleare hanno finito di essere disattivate solo ad inizio del nuovo millennio; tra enormi difficoltà e grandi speranze, migliaia di uomini e donne, con le più svariate specializzazioni, “liquidatori”, manovali, operai, tecnici, militari e scienziati hanno condiviso i medesimi spazi di lavoro, e continueranno a farlo.

Senza dimenticare chi ha perso la vita a causa dell’incidente catastrofico e chi ha pagato un prezzo intollerabile, forse è giunto davvero per tutti il momento di mettere le vecchie foto nel cassetto e guardare fiduciosi quelle nuove.

Tutto a posto così? No, il grosso del lavoro inizia adesso!

Il nuovo confinamento sicuro (New Safe Confinement – NSC) dell’unità 4 della centrale nucleare di Chernobyl è il frutto di un progetto senza precedenti nella storia della tecnica, denominato Shelter Implementation Plan (SIP).

Mai prima d’ora una struttura enorme era stata costruita in un sito fortemente contaminato.

027

Superare i rischi e le difficoltà inerenti il progetto ha richiesto anni di preparazione e di studio preliminare. I lavori al sito sono iniziati nel 2010 e dovrebbero essere completati al più tardi entro il 2017.

Per ridurre al minimo il rischio esposizione alle radiazioni dei lavoratori, è stato assemblato a qualche decina di metri di distanza dalla posizione definitiva, raggiunta scorrendo su appositi binari e spinto da enormi martinetti. La manovra di posizionamento ha richiesto alcuni giorni. Ora che è sopra l’edificio del reattore distrutto dall’esplosione del 29 aprile 1986, il nuovo “coperchio” impedisce la dispersione di materiale contaminato da radionuclidi ed allo stesso tempo protegge la struttura sottostante da danni esterni, dovuti per esempio a condizioni atmosferiche estreme.

028

Alta 108 metri, lunga 162 metri, con un’apertura di 257 metri la struttura ad arco pesa grossomodo 36.000 tonnellate ed è costituita da un reticolo di elementi tubolari in acciaio, sostenuto da travi longitudinali in cemento armato.

Fornirà un ambiente di lavoro sicuro, attrezzato con gru pesanti per il futuro smantellamento del vecchio sarcofago e la gestione dei rifiuti.

Sarà abbastanza forte da resistere ad un tornado ed il suo sofisticato sistema di ventilazione elimina il rischio di corrosione.

029

Progettazione e costruzione sono state assegnate nel 2007 al consorzio Novarka, guidato dalle imprese francesi Bouygues e Vinci.

Nel sito hanno lavorato e lavorano subappaltatori locali e altri provenienti da tutto il Mondo: gli elementi strutturali sono stati progettati e costruiti in Italia, le gru vengono dagli Stati Uniti, il rivestimento dalla Turchia, e le operazioni di sollevamento e di scorrimento sono state curate da una società olandese.

La costruzione è finanziata tramite il Chernobyl Shelter Fund, gestito dalla Banca Europea per la Ricostruzione e lo Sviluppo (European Bank for Reconstruction and Development – EBRD). I contratti assegnati sono in accordo con le politiche e le norme sugli appalti della BERS e le relative attività devono essere svolte in conformità alla sua policy ambientale e sociale.

Щире спасибі всім АЕС персоналу, техніків і робітників, що беруть участь в будівництві нового безпечного конфайнмента Чорнобильської АЕС.

Fonte:
BERS per i dati tecnici e commerciali; Wikipedia, Novarka e lo staff della centrale nucleare di Chernobyl per le foto.

Per ulteriori approfondimenti consigliamo il seguente video che riassume 8 anni di lavoro:


Making America great again

Bellefonte NPP, started in 1974, abandoned in 1988, will it be completed?
Bellefonte NPP, started in 1974, abandoned in 1988, will it be completed?

In our honest opinion there is a man who is already doing it! His name is Franklin L. Haney and he is 75 years old.

This Chattanooga, Tennessee-based mogul picked up a nuclear power station in Hollywood, Alabama at an auction last week. Yes, you read well, a nuclear power station, for just 111 million dollars! That’s the famous never completed Bellefonte.

As reported by CGR (Global Construction Review) online magazine, Haney said “the rejuvenated plant would ‘transform communities’ hit by coal-plant closures in Alabama and Tennessee.” And “completing the plant will employ up to 4.000 people; while operating it would create 2.000 ‘permanent, high paying jobs’.”

But he will need to bring all his deal-making talents to bear on this new asset: construction of the 2,6 GW power station was halted in far 1988 and it is likely to request several billion dollars to get it completed, because unit 1 is deemed approximately 55% complete, and unit 2 approximately 35% complete, having for years been ransacked for spare parts.

In addition, to hold him to his promises regarding the site, the seller, state utility Tennessee Valley Authority (TVA), stipulated that the buyer must invest at least 25 million dollars on the property within 5 years of closing the deal.

Well, imagine our shock, if this won’t happen!

We mean, we aren’t sufficiently oriented to wishful thinking about nuclear power to forget that business is business. And Mr Haney could always change his mind, provided he hasn’t already now (in a drawer somewhere) a different idea from that he has shown so far.

But let’s still dream for a while, with Haney’s words. “Today marks the first step of an exciting new journey for the people of Alabama and Tennessee,” he said in a statement. “The Bellefonte Nuclear Station will help transform communities across the region. This project will bring new life to the region by creating thousands of jobs while providing assured access to reliable, affordable, zero-emission energy.”

How not to agree?

Surprisingly this words match with some (not all) statements heard during the last presidential election campaign, about which we are standing with high hopes!

Hey, don’t take this as a galvanized reaction to the the news of November 9th, 2016. U.S. President-elected Donald J. Trump has still to demonstrate to be really ready and willing for a new cursus of energy policies, and only History will tell us if this shall be also in favor of a new nuclear renaissance for America.

And by the way, it’s hard to miss the fact that Mr Haney, a long time Democratic donor, funded the campaign for President Obama’s reelection 4 years ago. Not to say he has also been several times under reflectors due to the fact he has built his business around developing government-supported real estate projects – being even indicated as a “Government Landlord”.

And so on and on, you can find by yourselves a lot of interesting further information or silly yak-yak on the web. This is not the point.

We were simply wondering if Haney’s iniziative in coincidence of Trump’s election could be a symptom of a new sight on America’s energy future. In other words, if such a kind of investment is a claim of “innovative financing”; if it will possibly suggest some good ideas to the President-elected; and ultimately if it can really change the approach to nuclear power in the U.S. and, as a reflection, all over the World – maybe a tangible way to make America great again.

Well, our guess and hope is: yes, yes and yes!

024

11/25/2016 Update: Maria Korsnick, CEO of the Nuclear Energy Institute, has recently discussed about the future of the American nuclear industry under Trump administration. You can watch the video of the interview at this link.

 

Strategie Energetiche e Titolo V della Costituzione

Conferenza Nazionale sull'Energia

La riforma costituzionale che sarà soggetta il prossimo 4 dicembre a consultazione referendaria prevede, tra le tante cose, anche una sostanziale modifica del Titolo V della Costituzione, ovvero del riparto delle competenze tra Stato e Regioni.
La Legge n.3 del 18 ottobre 2001 introdusse nella carta costituzionale una classificazione delle materie legislative, definendo tre categorie: le materie di competenza esclusiva dello Stato; le materie a legislazione concorrente tra Stato e Regione; tutte le materie non espressamente nominate nelle due categorie precedenti, la cui potestà legislativa spettava alle Regioni.
E’ da rilevare come il concetto di legislazione concorrente sia stato da più parti criticato per la sua ambiguità applicativa, che ha causato negli anni una certa disomogeneità normativa tra le diverse realtà regionali, nonché un aumento consistente di contenziosi tra Stato e Regioni presso la Corte Costituzionale.
La riforma del 2016 prevede l’eliminazione deIla legislazione concorrente e una redistribuzione esplicita e…

View original post 143 altre parole

La centrale di Krško e la cultura della Sicurezza Nucleare

La città di Trieste ha ospitato alcune settimane fa un’importante serie di eventi istituzionali e informativi dedicati al tema della sicurezza nucleare.
Oltre al convegno nazionale dell’Associazione Italiana di Radioprotezione, svoltosi dal 19 al 21 ottobre, il capoluogo giuliano è stato il teatro di un incontro bilaterale tra le Autorità di sicurezza nucleare italiana e slovena (ISPRA e SNSA), che ha visto la partecipazione anche di rappresentanti della Regione Friuli Venezia Giulia, dell’ARPA e della Protezione Civile regionali. A margine di questi appuntamenti di rilievo istituzionale, non sono mancate le iniziative rivolte alla cittadinanza, con convegni, conferenze e una tavola rotonda sullo stato dell’arte della prevenzione e gestione delle emergenze radiologiche e sulle problematiche relative alla comunicazione sulla sicurezza nucleare.

Figura 1: Stefano Laporta (Direttore ISPRA), Sara Vito (Assessore regionale Ambiente ed Energia) e Luca Marchesi (Direttore generale ARPA FVG) al convegno
Figura 1: Stefano Laporta (Direttore ISPRA), Sara Vito (Assessore regionale Ambiente ed Energia) e Luca Marchesi (Direttore generale ARPA FVG) al convegno “La gestione dell’emergenza radiologica a Trieste e in Friuli Venezia Giulia”, nella sede della Regione – Trieste 18/10/2016. Foto ARPA FVG

Nonostante la rilevanza e l’attualità delle tematiche trattate e l’autorevolezza dei rappresentanti istituzionali intervenuti, spiace notare come gli appuntamenti in programma abbiano faticato a ritagliarsi uno spazio sui media nazionali e locali. A destare in noi un certo stupore è stato in particolare il quasi totale silenzio del principale organo di stampa del capoluogo giuliano, “Il Piccolo” (Gruppo Editoriale l’Espresso), che nei giorni precedenti alla manifestazione e per tutta la settimana di svolgimento ha omesso di segnalare gli eventi sopracitati e di fornirne un successivo resoconto. Tutto questo a dispetto dell’interesse spesso manifestato dalla cittadinanza sul tema e dell’attenzione che periodicamente viene dedicata dal medesimo giornale – il più delle volte con toni sproporzionati e allarmistici – alle vicende legate alla vicina centrale nucleare slovena di Krško ed ai rischi radiologici a cui la popolazione dell’intero Friuli Venezia Giulia sarebbe esposta, in caso di un ipotetico quanto improbabile incidente catastrofico (INES 7). Tale scelta editoriale appare ancor più stonata se si considera che pochi giorni addietro la stessa testata giornalistica aveva ospitato sulle sue colonne un ampio resoconto dell’audizione di alcuni ricercatori, presso la Commissione Ambiente del Senato, in merito alla rivalutazione della pericolosità sismica dell’area nella quale sorge l’impianto sloveno.
É evidente che le problematiche relative al rischio sismico e quelle sulla sicurezza radiologica dell’impianto di Krško e dell’area circostante (Trieste inclusa) sono fortemente correlate; parlare quindi estesamente e ripetutamente delle prime ed evitare completamente di fare menzione delle iniziative che discutono delle seconde, non costituisce a nostro avviso un esempio di buon servizio di informazione: la realtà dei fatti viene in questo modo dipinta in modo quantomeno parziale.

Figura 2: Edizione cartacea de “Il Piccolo” del 5 maggio 2016: la notizia dell'estensione ventennale dell'operatività della centrale viene dipinta come un “incubo” che si perpetua, “fra avarie, allarmi e paure”.
Figura 2: Edizione cartacea de “Il Piccolo” del 5 maggio 2016: la notizia dell’estensione ventennale dell’operatività della centrale viene dipinta come un “incubo” che si perpetua, “fra avarie, allarmi e paure”.

Da parte nostra non possiamo che ripetere quanto andiamo dicendo da anni: il nostro Paese ha un enorme bisogno di promuovere una solida cultura della sicurezza. Esiste infatti un evidente divario tra il rischio reale associato alle diverse attività umane, e il corrispondente rischio percepito dalla popolazione. Quest’ultimo viene spesso sovrastimato quando le conoscenze sull’argomento sono deboli (se non nulle), e quando i media – come nel caso dell’energia nucleare – tendono discrezionalmente ad evidenziare specifici aspetti problematici, tralasciando quelle informazioni tecniche che sarebbero utili per inquadrare in maniera più equilibrata la questione, o semplicemente parlano di un argomento solo in occasione di incidenti o per sollevare preoccupazioni.
Di conseguenza, la promozione della cultura della sicurezza può avvenire solo grazie all’accrescimento delle conoscenze scientifiche e tecnologiche dei cittadini, a partire dal sistema scolastico, nonché alla promozione di una informazione giornalistica che sia il più possibile oggettiva, completa e tecnicamente adeguata.
Comprendiamo quanto ciò faccia a pugni con la necessità degli organi di stampa di solleticare la paura della gente e di cavalcare l’onda del sensazionalismo, ma c’è un limite di ragionevolezza che non dovrebbe essere travalicato, ed una responsabilità a cui nessun giornalista dovrebbe sottrarsi.
Non è certo un caso se poi, in occasione di eventi drammatici come le scosse di terremoto che hanno colpito nuovamente il Centro Italia in questi giorni, le teorie più strampalate trovino terreno fertile in ampi strati della popolazione, assieme ad un clima di strisciante sfiducia e di sospetto nei confronti delle istituzioni scientifiche e degli enti preposti al monitoraggio e alla gestione delle emergenze.

Detto questo, è anche vero che siamo ben consapevoli di non avere in tasca tutte le soluzioni, né eventualmente i mezzi per poterle applicare: nel nostro piccolo ci sentiamo piuttosto una goccia nel mare. Questo però non ci scoraggia, ed in ogni frangente portiamo avanti l’impegno che ci siamo presi con chi ci segue: una corretta divulgazione scientifica per stimolare una riflessione indipendente da ideologismi e pregiudizi.

Tornando dunque al tema che dà il titolo a questo nostro articolo, forniamo volentieri qui di seguito una breve ricostruzione di uno degli eventi a cui abbiamo assistito nel corso della settimana triestina dedicata alla sicurezza nucleare: la conferenza intitolata “Radioprotezione in Italia e in Friuli Venezia Giulia: la centrale nucleare di Krško”,  promossa dal Centro Culturale Veritas e svoltasi il 17 ottobre, con la partecipazione del direttore generale dell’ISPRA Stefano Laporta, del direttore dell’ARPA FVG Luca Marchesi e con l’intervento dei tecnici del Centro Regionale per la Radioprotezione dell’ARPA FVG, Concettina Giovani e Massimo Garavaglia.

Figura 3
Figura 3

La conferenza è iniziata con un articolato resoconto sulle attività di monitoraggio della radioattività ambientale, che in Italia vengono condotte sotto il controllo dei Ministeri dell’Ambiente e della Salute, attraverso reti di rilevamento regionali e nazionali [1].

Ad oggi risultano attive sul territorio italiano: la rete di sorveglianza RESORAD, organizzata attraverso le ventuno agenzie regionali e provinciali per la protezione dell’ambiente e altri istituti e laboratori locali, con lo scopo di monitorare la radioattività nell’ambiente e negli alimenti; la rete REMRAD, gestita direttamente dall’ISPRA con compito di pronto allarme, costituita da 7 stazioni automatiche in grado di segnalare, attraverso l’analisi del particolato atmosferico, le possibili contaminazioni conseguenti ad un ipotetico incidente in una installazione nucleare straniera [2]; la rete GAMMA, anch’essa gestita dall’ISPRA, composta da 61 centraline che misurano in maniera automatica la dose gamma in aria, fornendo dati in tempo reale a un sistema centralizzato e integrato alla piattaforma europea di allarme EURDEP.
Di notevole interesse è stata la presentazione delle attività specifiche della rete di monitoraggio regionale, che prevede l’analisi periodica di matrici ambientali (campioni di terreno, muschi, funghi, particolato atmosferico, fall-out) e alimentari (carni, latte e suoi derivati, frutta, verdura, selvaggina, pesci, uova, ecc.), al fine di rilevare e valutare tempestivamente la possibile esposizione degli esseri umani a valori anomali di radioattività per inalazione o ingestione [3]. Nel caso del Friuli Venezia Giulia, tale attività è condotta dal Centro Regionale per la Radioprotezione dell’ARPA FVG, con stazioni di raccolta e controllo del particolato atmosferico e laboratori di analisi dislocati tra Udine e Gorizia.

Figura 4: Vista aerea della centrale nucleare di Krško. La società che gestisce l’impianto, la Nuklearna elektrarna Krško, è una joint venture al 50% tra le società statali slovena Gen-Energija e croata Hrvatska elektroprivreda (HEP), controllate rispettivamente dal Ministero sloveno delle Infrastrutture e dal Ministero croato dell’Economia. La centrale è localizzata ad una distanza in linea d’aria di 77 km da Lubiana e di 41 km da Zagabria.
Figura 4: Vista aerea della centrale nucleare di Krško. La società che gestisce l’impianto, la Nuklearna elektrarna Krško, è una joint venture al 50% tra le società statali slovena Gen-Energija e croata Hrvatska elektroprivreda (HEP), controllate rispettivamente dal Ministero sloveno delle Infrastrutture e dal Ministero croato dell’Economia. La centrale è localizzata ad una distanza in linea d’aria di 77 km da Lubiana e di 41 km da Zagabria.

La seconda parte del convegno è stata dedicata ad una illustrazione dello stato dell’arte relativo ai rischi radiologici associati alla centrale nucleare di Krško. Si tratta come noto di un impianto situato ad una distanza dalla città di Trieste di circa 130 km in linea d’aria, e che noi del Comitato Nucleare e Ragione conosciamo bene avendo allestito, nel corso degli ultimi due anni, ben quattro visite tecniche, con ampio successo in termini di partecipazione e di interesse.
In merito a questo aspetto i tecnici dell’ARPA hanno ampiamente confermato un quadro rassicurante, in cui il rischio radiologico per la popolazione risulta decisamente basso, soprattutto se confrontato con quello – spesso sottovalutato – derivante dall’impiego di radionuclidi in ambito medico o industriale [4].

Pur trattandosi di un impianto in attività da più di 30 anni, la centrale di Krško rispetta ampiamente le normative e gli standard internazionali, ed è stata sottoposta negli anni a continui interventi di manutenzione e aggiornamento, finalizzati ad un miglioramento generale delle prestazioni e dei parametri di sicurezza, anche per quanto riguarda il rischio sismico. Tra le numerose azioni recentemente messe in atto vi è – a titolo di esempio – l’installazione di un nuovo sistema di filtri (Passive Containment Filtering Ventilation System), che in caso di incidente al nocciolo del reattore è capace di trattenere fino al 99% dei radionuclidi eventualmente fuoriusciti. Si tratta di un dispositivo passivo, ovvero che non richiede l’intervento di un operatore ed è in grado di funzionare senza alcun tipo di alimentazione. La centrale di Krško è stata la prima, in Europa, a dotarsi di questo sistema, che fa parte dell’insieme di interventi predisposti nell’ambito del Safety Upgrade Program avviato nel 2012.  É importante sottolineare come l’iter per l’estensione ventennale dell’operatività della centrale (dal 2023 al 2043) è stato autorizzato proprio in virtù di questo piano di miglioramento, che sarà in ogni caso sottoposto a verifica decennale e che vedrà anche l’ISPRA tra i soggetti direttamente informati, in virtù di un accordo bilaterale siglato con la SNSA nel 2010, e che prevede un canale privilegiato di comunicazione tra le istituzioni italiane e slovene.
Merita segnalare a questo proposito come, nell’ambito della cooperazione tra Stati in tema di sicurezza nucleare, nel marzo di quest’anno sia stata condotta un’esercitazione internazionale di emergenza, che ha assunto a riferimento uno scenario di incidente nucleare simulato proprio nella centrale di Krško! L’Italia ha partecipato all’esercitazione con una task force guidata dall’ISPRA.
Nel corso della conferenza non è mancato un approfondimento sulla discussa questione del rischio sismico della centrale. È stato sottolineata in questo contesto l’importanza della revisione di sicurezza straordinaria indetta nel 2011 (i cosiddetti stress test): sebbene gli studi probabilistici sulla pericolosità sismica dell’area, condotti nel 1994 e nel 2004, abbiano fornito delle stime dei valori massimi di accelerazione attesi (PGA, Peak Ground Acceleration) superiori a quelli considerati in fase di progettazione dell’impianto [5], il rapporto ufficiale pubblicato dalla SNSA ha evidenziato come gli spettri di risposta della struttura, calcolati considerando i nuovi valori di PGA, siano risultati in tutto simili a quelli calcolati con i valori originari di progetto. Nello stesso rapporto è stato specificato inoltre che ipotetici danni al nocciolo sarebbero possibili solo al verificarsi di un sisma con accelerazioni al suolo pari a 0.8-0.9 g  – evento caratterizzato da un periodo di ritorno superiore ai 50.000 anni, e che solo delle sollecitazioni significativamente superiori a 1.0 g – quindi con tempi di ritorno ancora maggiori – sarebbero in grado di provocare danni alle strutture ed ai sistemi di contenimento e di mitigazione tali da causare rilasci incontrollati di materiale radioattivo nell’ambiente  con conseguente rischio sanitario [6].

Figura 5: Andamento del parametro probabilistico di frequenza di danneggiamento del nocciolo (Core Damage Frequency) per la centrale nucleare di Krško: si noti come tale valore sia quasi dimezzato a seguito degli interventi di ammodernamento dell'impianto messi in atto negli anni successivi all'incidente del 2011 presso la centrale giapponese di Fukushima [6]. Immagine per gentile concessione di Nuklearna Elektrarna Krško.
Figura 5: Andamento del parametro probabilistico di frequenza di danneggiamento del nocciolo (Core Damage Frequency) per la centrale nucleare di Krško: si noti come tale valore sia quasi dimezzato a seguito degli interventi di ammodernamento dell’impianto messi in atto negli anni successivi all’incidente del 2011 presso la centrale giapponese di Fukushima [6]. Immagine per gentile concessione di Nuklearna Elektrarna Krško.
Il convegno si è concluso con l’intervento del direttore generale dell’ISPRA. Nell’illustrare le attività istituzionali e le finalità del Dipartimento Nucleare, Rischio tecnologico e Industriale dell’ente [7], Stefano Laporta ha ribadito l’importanza di “squarciare il velo dell’ipocrisia” che avvolge in Italia il dibattito pubblico sul nucleare. Non diciamo nulla di nuovo ricordando che l’Italia, nonostante la rinuncia alla produzione sul territorio nazionale di energia elettrica attraverso i processi di fissione, non è mai uscita, né mai uscirà dal nucleare – per quanto questa espressione possa avere un senso. I motivi sono numerosi:  1) il nostro Paese è membro a tutti gli effetti dei principali organismi internazionali che si occupano di sicurezza nucleare e di promozione dell’uso pacifico delle tecnologie nucleari; 2) il nostro Paese ha  stipulato – come già ricordato per il caso specifico della Slovenia – accordi bilaterali di collaborazione e scambio reciproco di informazioni con tutti i Paesi confinanti che ospitano reattori nucleari, dai quali siamo tra l’altro importatori netti di elettricità; 3) anche nel nostro Paese l’impiego di radioisotopi, e più in generale di sorgenti di radiazioni ionizzanti, trovano applicazione in una vastissima gamma di attività in campo medico, industriale e scientifico; 4) diverse imprese italiane sono coinvolte nella costruzione di componenti per reattori in Paesi stranieri, nonché nella realizzazione di progetti internazionali per lo sviluppo della fusione nucleare; 5) il nostro Paese è impegnato nel piano di decommissioning delle vecchie centrali e nel progetto per il Deposito Nazionale per i rifiuti radioattivi, la cui realizzazione rappresenta una grande opportunità in termini di investimenti e di ricaduta economica sul territorio, nonché un impegno di responsabilità, dal quale come Nazione non possiamo in alcun modo sottrarci.

Proprio su quest’ultimo aspetto il direttore dell’ISPRA non ha mancato di sottolineare l’amarezza per le mille difficoltà che si stanno riscontrando nell’iter di approvazione del progetto [8], alimentate dal pregiudizio che una porzione maggioritaria della popolazione nutre nei confronti della tecnologia nucleare, e dalla conseguente incapacità della classe politica di portare a compimento decisioni necessarie e lungimiranti, benché impopolari.

L’errore di fondo è l’assenza di un vero piano di comunicazione scientifica sul tema: di nucleare si discute da anni, ma troppo spesso a singhiozzo e solo nelle situazioni contingenti ed emergenziali, alimentando nel pubblico un atteggiamento di ostilità e diffidenza. “Passata la tempesta”, la questione ritorna nel dimenticatoio, ed ogni sforzo di comunicazione attraverso i media risulta così vanificato, costringendo ogni volta a ricominciare da capo.
L’auspicio di Laporta – che alle nostre orecchie assume il tono di un appello accorato – è quello di un vero e proprio cambio di rotta: di nucleare si deve tornare a parlare con continuità e coraggio, senza paure né ipocrisie. Solo promuovendo in tutti gli ambienti la diffusione del sapere scientifico e la cultura della sicurezza nucleare, l’Italia potrà rompere le catene dettate dal pregiudizio e tornare a scommettere sul suo futuro. É una scommessa rischiosa, ma anche un rischio che è doveroso affrontare.

E noi anche per questo non smetteremo di dare il nostro piccolo ma appassionato contributo.

[14/11/2016, aggiornamento: sono da oggi disponibili, sul sito dell’ARPA FVG, tutti i contributi del convegno “La gestione dell’emergenza radiologica a Trieste ed in Friuli Venezia Giulia”, che si è tenuto il 18 ottobre 2016 presso la Sala di Rappresentanza della Regione Autonoma Friuli Venezia Giulia.]

NOTE:
[1]       La normativa di riferimento è il D.Lgs.230/95, che recepisce la direttiva EURATOM 96/29 e i regolamenti dell’Unione Europea in materia di radioprotezione.

[2]       Le stazioni automatiche della rete REMRAD sono situate in aree dell’Aeronautica Militare, selezionate in base alla loro importanza per il controllo di possibili vie di accesso nel territorio italiano di contaminazione radioattiva conseguente ad un ipotetico incidente catastrofico presso un impianto nucleare straniero. Una delle sette installazioni è ubicata in Friuli Venezia Giulia, nella località di Sgonico (TS).

[3] Per “fall-out” si intende la ricaduta sul terreno più o meno protratta nel tempo del materiale radioattivo polverizzato e disperso in aria a seguito di un’esplosione nucleare (come nel caso dei test nucleari) o chimica (come accaduto nell’incidente alla centrale di Chernobyl). Per maggiori dettagli: https://nucleareeragione.org/risposte-veloci/

[4]       A titolo d’esempio, riportiamo quanto accaduto alcune settimane fa presso la Norrland University Hospital in Umea (Svezia): durante le normali attività di esercizio di un ciclotrone, per la preparazione di radioisotopi a uso medico, la porta del bunker è stata lasciata aperta, esponendo alcuni addetti ad una dose ingiustificata di radiazioni. L’incidente è stato classificato al livello 2 della scala INES.

[5]       All’epoca della progettazione della centrale, e con le informazioni geologiche allora disponibili, la soglia di “spegnimento sicuro” fu individuata in uno scuotimento del suolo pari a 0.3 g. La mappa di pericolosità dell’epoca riportava infatti per l’area di Krško un valore di PGA di circa 0.2 g (valore con probabilità di superamento del 10% in 50 anni), quindi inferiore ai limiti di sicurezza della centrale. Tale valore è stato elevato nel 2004 a 0.56 g, dopo che una prima revisione della stima della pericolosità, fatta dieci anni prima, aveva fissato il valore di 0.42 g. Ricordiamo che l’accelerazione del suolo in caso di terremoto si misura in unità di gravità (g). Per esempio 0.3 g significa un’accelerazione del suolo pari a circa 3.27 m/s², ovvero il 30% dell’accelerazione di gravità.

[6]       Dal punto di vista della sicurezza radiologica, è fondamentale che un impianto nucleare sia concepito in modo da resistere ad un eventuale sisma; tale condizione necessaria non è tuttavia sufficiente. I punti di forza e di debolezza del progetto e del funzionamento di una centrale nucleare debbono essere “scandagliati” attraverso una analisi del tipo Probabilistic Risk Assessment (PRA), sia in fase iniziale sia con ripetute revisioni durante il periodo di operatività. Questo tipo di analisi, riconosciuta formalmente dagli organi di controllo nazionali ed internazionali, suddivide i rischi legati all’operatività di una centrale nucleare in 3 livelli. Il livello 1 della PRA stima la frequenza degli incidenti che causano danni al nocciolo del reattore nucleare. A questo livello, dal punto di vista probabilistico, il parametro più significativo è rappresentato dalla frequenza di danneggiamento del nocciolo (Core Damage Frequency). Nel caso della centrale nucleare di Krško (Figura 5) questo valore è significativamente calato nel corso degli anni, nonostante la rivalutazione di pericolosità sismica, proprio in virtù delle azioni messe in atto dalla centrale in un’ottica di “difesa in profondità” [defense in depth]. Il livello 2 della PRA stima la frequenza degli incidenti gravi dove non si ha solo danneggiamento del nocciolo ma anche rilascio di radionuclidi (più o meno controllato) dalla centrale nucleare. Infine, il livello 3 della PRA stima le conseguenze in termini di danni al pubblico e danni all’ambiente dei rilasci ipotetici di cui al livello precedente. Per ognuno di questi livelli di rischio vengono considerate delle precise catene di eventi (ciascuno con la propria probabilità di accadimento) in grado di produrre danni di entità e tipo diversi, ossia con danneggiamento più o meno esteso e/o grave del reattore, con rilascio controllato o incontrollato nell’ambiente esterno di radionuclidi, con ipotetico danno più o meno probabile e/o esteso per la salute degli esseri umani in particolare e/o della biosfera in generale. Tale suddivisione dell’analisi del rischio rispecchia la struttura della salvaguardia della sicurezza di una centrale nucleare, vale a dire il concetto di difesa in profondità a barriere di protezione successive, che potremmo semplificare con l’immagine di una matrioška. Per tutti questi motivi è dunque importante non confondere il rischio di un ipotetico danno grave al nocciolo, ovvero di una fusione parziale o totale del medesimo, con quello, ben più grave, di un rilascio di grandi quantità di radionuclidi nell’ambiente, né con quello gravissimo di una esposizione della biosfera a livelli di radioattività pericolosi per la salute. Per ulteriori dettagli consigliamo la lettura di una agile spiegazione della PRA fornita dalla Nuclear Regolatory Commission degli Stati Uniti, qui: http://www.nrc.gov/about-nrc/regulatory/risk-informed/pra.html

[7]       La normativa vigente attribuisce al Dipartimento Nucleare, Rischio tecnologico e Industriale dell’ISPRA le funzioni e i compiti di ente regolatore nazionale per la sicurezza nucleare e la radioprotezione. Tali compiti verranno in futuro trasferiti all’Ispettorato nazionale per la sicurezza nucleare e la radioprotezione (ISIN), autorità recentemente istituita attraverso il D.Lgs n. 45/2014 in recepimento della direttiva 011/70/EURATOM.

[8]       Ne avevamo parlato qui e qui, quando la procedura di approvazione del progetto sembrava finalmente aver imboccato il binario giusto. Per farla breve: il 4 giugno 2014 l’ISPRA ha pubblicato la Guida Tecnica contenente i criteri per individuare le aree idonee ad ospitare il Deposito Nazionale; a gennaio 2015 la SOGIN ha consegnato ad  ISPRA la proposta di Carta delle Aree Potenzialmente Idonee (CNAPI); l’ISPRA, nei mesi successivi ha verificato la corretta applicazione dei Criteri da parte di SOGIN; dopo alcune passaggi e richieste di approfondimenti tecnici, la Carta è stata validata e già prima dell’estate 2015 consegnata ai Ministeri dello Sviluppo Economico e dell’Ambiente, per ottenere il nulla osta alla pubblicazione. L’iter si è a questo punto arenato: la SOGIN avrebbe dovuto rapidamente pubblicare  su internet e sui giornali la CNAPI e il progetto preliminare del Deposito, avviando quindi la fase di consultazione pubblica di 4 mesi, che si sarebbe conclusa con un Seminario Nazionale e la pubblicazione, 5 mesi dopo, della Carta Nazionale delle Aree Idonee (CNAI). Nulla di tutto ciò è avvenuto. La CNAPI giace sigillata nei cassetti dei ministeri, dove è probabile che vi rimanga almeno fino all’autunno 2017.

La lignite del vicino è sempre più verde

[prima tappa del nostro viaggio nei meandri della transizione energetica tedesca, alla scoperta di cosa si nasconde dietro gli annunci roboanti e lo strombazzamento mediatico che ci raccontano solo la crescita vertiginosa delle fonti di energia rinnovabile]

011
Fig. 1      Lo sai che? Jänschwalde, centrale termoelettrica a lignite, esercita dall’utility svedese Vattenfall, si trova in Germania, Brandeburgo, al confine con la Polonia – in primo piano una piccola parte dell’immensa distesa del bacino di approvvigionamento del combustibile.

La Energiewende, la svolta della Germania verso l’utilizzo massiccio di fonti energetiche rinnovabili sembrerebbe una storia di successo. Il Paese si è dedicato “anima e corpo” ad una transizione epocale, e tutti (o quasi) lo additano ad esempio mentre si dirige a grandi passi verso magnifiche sorti energetiche.

A seguito dell’incidente di Fukushima, i passi fatti sono divenuti quelli di un gigante: le fonti rinnovabili sono in piena espansione; tutto d’un colpo sono state pre-pensionate 6 unità di centrali nucleari [1]. Eppure, vale ancora il vecchio proverbio, a proposito di “passi”. Vediamo perché.

Nei 5 anni trascorsi dal panico iniziale post-Fukushima un’altra centrale nucleare ha chiuso i battenti in Germania, anticipando i programmi federali e prendendo in contropiede l’intero sistema elettrico [2]. Il motivo è molto semplice. Se da una parte è vero che ormai l’energia elettrica da fonti rinnovabili rappresenta un terzo di quella consumata in Germania, dall’altra è anche vero che questo successo ha un rovescio della medaglia: il mercato elettrico tedesco è a pezzi.

E questo rovescio non solo sta avendo ripercussioni immediate e verificabili, ma ne avrà senz’altro di altre, al momento difficilmente stimabili, sia all’interno del Paese che su quelli limitrofi.

012
Fig. 2      Lo sai che? Grafenrheinfeld, centrale termoelettrica nucleare, esercita dall’utility E.ON, si trova in Germania, Baviera – da giugno 2015 si è staccata dalla rete, 6 mesi prima della data pianificata con il Governo federale, per evitare di pagare la tassa sul combustibile (80 milioni di euro) necessario per completare l’ultimo periodo di funzionamento.

Mentre l’elettricità da fonte eolica e fotovoltaica è immessa nella rete tedesca a prezzi fissi ed in via prioritaria, quella proveniente dalle centrali alimentate da combustibili fossili (ed indirettamente anche quella dalle centrali nucleari) è sottoposta alla “dura” legge del mercato. E sul mercato tedesco le maglie si sono fatte assai strette negli ultimi 5 anni, tanto che oggi come oggi passa solo l’elettricità che vale circa 20 €/MWh – una bella differenza dai 60 €/MWh del 2011.

(Per i meno avvezzi a questo tipo di cifre forse vale la pena ricordare che stiamo parlando del prezzo relativo agli incassi dei produttori, e nello specifico di quelli nel campo non-FER [3]. Il costo per i consumatori tedeschi è ben altra cosa – e non trascureremo di parlarne, prossimamente.)

È dunque posta sotto minaccia l’esistenza stessa degli operatori di impianti convenzionali?

Secondo una ricerca commissionata dal Handelsblatt (quotidiano tedesco di economia e finanza) al Trend Research institute (istituto di ricerca di marketing), le centrali elettriche convenzionali e nucleari sono scese sotto la soglia critica di sottoproduzione, ed il loro utilizzo è destinato a diminuire ulteriormente nel giro di 5 anni. Quest’anno le centrali a gas, a carbone o lignite, e quelle nucleari che sono rimaste allacciate alla rete produrranno grossomodo 435 terawattora di elettricità, mentre sono state progettate e costruite per produrne almeno 521 all’anno (-17%) [4]. Entro il 2020, il divario negativo tra la capacità di generazione e la produzione effettiva è molto probabile che aumenti sino a raggiungere il 23%, un valore economicamente insostenibile.

013
Fig. 3      Lo sai che? La Germania, nonostante la transizione energetica in atto, è ancora piena di centrali termoelettriche a carbone (hard coal) e lignite (brown coal), come si può vedere da una delle mappe interattive di carbonbrief.org. Fonte: screenshot dal post “Mapped: How Germany generates its electricity” del 20 settembre 2016, sul quale abbiamo riportato legenda e dati principali.

A tutto questo va aggiunto che gli sforzi della Germania per ottenere energia “più pulita” dipendono in larga misura dal supporto dei suoi vicini, e che sempre di più ne dipenderanno, al crescere dei gigawatt degli impianti FER. Quando la produzione immessa nella rete elettrica da fonte solare o eolica è alta, l’offerta può superare la domanda, costringendo i gestori tedeschi a scaricare il surplus di potenza elettrica nelle reti dei vicini. Quando la medesima produzione è tagliata dalle condizioni atmosferiche o dal semplice alternarsi del giorno e della notte, e non bastano a compensare le centrali termoelettriche tedesche, allora si “aprono le porte” all’elettricità dei vicini. In questo modo, tra back-up e dumping [5] i gestori svizzeri, francesi, olandesi, danesi, svedesi, polacchi, cechi ed austriaci compensano le intermittenze delle mega installazioni FER tedesche esercendo i propri impianti convenzionali e nucleari a livelli non economici.

Uno scenario preoccupante. Davanti al quale tuttavia qualcuno potrebbe anche giustamente obiettare con una semplice domanda: ma non è una buona notizia che i “magnati” dei combustibili fossili se la passino male?

Il problema è che pur attraversando un momento difficile, i fornitori di energia da fonti fossili in Germania occupano ancora un ruolo non solo strategico ma anche preponderante.

Per esempio, come enfatizza lo stesso Bundesministerium für Wirtschaft und Energie (BMWi – Ministero Federale per l’Economia e l’Energia), il carbone continua a svolgere un ruolo fondamentale nel mix energetico tedesco. In particolare, circa il 24% della generazione di energia elettrica viene dalla lignite autoctona, un altro 18% dal carbone fossile. Con il 5% fornito dal gas e qualche altro punto percentuale dal petrolio (passeranno mai di moda i motori diesel?) si arriva quasi a coprire la metà della produzione. L’altra metà è low carbon.

Peccato per le centrali nucleari già “chiuse”: con il loro semplice contributo, il paniere elettrico tedesco sarebbe già ora molto più conforme agli obiettivi iniziali della Energiewende [6].

Ci sono inoltre alcuni aspetti particolarmente interessanti nelle dinamiche che caratterizzano oggi ed andranno a delineare nei prossimi anni i confini della parte di torta “high carbon”. Con i “prezzi del carbonio” [carbon price] UE ETS bassi e con i prezzi del carbone fossile altrettanto bassi, carbone e lignite sono più vantaggiosi del gas per la produzione di energia elettrica. E così la Germania è incentivata a dare fondo alle proprie ingenti riserve di lignite, nonostante le emissioni di CO₂ più elevate legate all’utilizzo di tale fonte. Con buona pace del “Piano di Azione per il Clima” con il quale i tedeschi si erano impegnati a porre fine all’uso del carbone ben prima del 2050 –  come ci ricorda prontamente la World Nuclear Association, che segue passo passo le vicende della Energiewende, quasi tenendole il fiato sul collo. E non crediamo sia un caso che questo obiettivo sia stato abbandonato ufficialmente lo scorso settembre, senza fornire nuovi piani per eliminare dal carico di base (baseload) della produzione elettrica la componente lignite [7].

014
Fig. 4      Centrali termoelettriche a lignite ancora operative in Germania, suddivise per età, “taglia” ed operatore. Totale: 61 unità in funzione, 20,8 GW di capacità netta di generazione. Fonte: Arthur D. Little, 2015

Riteniamo inoltre che King Coal, tolto qualche acciacco, non se la passi poi così male in Germania.

Un recente studio della Arthur D. Little [8] sembra in sintonia con il nostro sentiment. Nelle loro conclusioni Matthias von Bechtolsheim e Michael Kruse fanno alcune osservazioni importanti, riassumibili così: prima delle prossime elezioni (2017) non ci saranno azioni politiche anti-lignite e/o anti-carbone, e le difficoltà di attuazione del “Piano di Azione per il Clima” (legate anche ad alcune azioni legali, potenziali o già in corso) si potrebbero risolvere in un facile compromesso che permetta al Governo di raggiungere l’obiettivo principale in vista delle elezioni, vale a dire limitare nel breve periodo l’onere dei costi della Energiewende sulle imprese e sui consumatori.

E la lignite è molto economica, più del gas, come abbiamo già detto [9]; sembrerebbe quindi in grado di resistere ancora un po’ alla sfida con le super-incentivate FER; inoltre non può essere ulteriormente “tartassata”, se non attraverso un inasprimento del carbon emission scheme da stabilirsi a livello europeo.

Gli autori dello studio sul futuro della lignite fanno notare anche un altro aspetto politico della situazione energetica tedesca, che è a dir poco interessante. L’eliminazione dell’utilizzo del carbone e della lignite è una delle ragioni d’esistere del partito dei Verdi in Germania (dopo la lotta senza quartiere all’energia nucleare, ovvio!), e tale partito potrebbe avere un ruolo determinante nello schieramento del prossimo Governo federale; ciononostante una “coal-exit” o una “lignite-exit” sono un’impresa ardua non solo per motivi puramente tecnico-scientifici, o economici, ma anche amministrativi, legali e costituzionali: in poche parole non esiste alcuna “legge sulla lignite” come invece esiste una chiara “normativa nucleare”, in base alla quale si possono “semplicemente” spegnere da un momento all’altro tutte le centrali nucleari tedesche.

015
Fig. 5      Lo sai che? La lignite è radioattiva. Ovviamente questa è un’immagine photoshoppata, e non esiste alcuna “lignite trasmutante”; tuttavia non va dimenticato che la concentrazione dei radionuclidi di origine naturale rende questo materiale più radioattivo di molti altri di uso comune [10].

(continua…)

Note:

[1]       Nel marzo 2011 erano operative in Germania 17 unità dislocate in 12 centrali. Le centrali di Brunsbüttel e Krümmel, comprese nel novero, erano però disattivate dal 2007 e non sono state più riattivate (fa eccezione un breve periodo di funzionamento nel 2009 per Krümmel).

A seguito dell’incidente di Fukushima il Governo federale tedesco dichiarò una moratoria di 3 mesi nei quali eseguire test e controlli stringenti su tutte e 17 le unità utilizzabili.

A fine lavori la Reaktor-Sicherheitskommission (RSK, Reactor Safety Commission – Commissione per la Sicurezza Nucleare) riferì che tutte le unità operative delle centrali nucleari tedesche erano sicure e “in salute”. Una garanzia evidentemente inutile, dato che il 30 maggio 2011, sotto la crescente pressione degli Stati federali caratterizzati da un’opinione pubblica di orientamento anti-nucleare, il Governo ripescò il piano di phase-out della precedente amministrazione e decise di “chiudere” tutte le centrali nucleari entro il 2022, di cui 8 unità da subito (6 più Brunsbüttel e Krümmel). Bundestag e Bundesrat approvarono praticamente “senza fiatare”.

Interessante notare che a stretto giro entrambe le Camere del Parlamento tedesco approvarono anche la costruzione di nuove centrali a carbone e a gas, nonostante la pretesa di mantenere gli obiettivi di riduzione delle emissioni di gas-serra. Il tutto sotto il segno della Energiewende.

Inoltre ad oggi per nessuna delle unità in shutdown permanente esiste il benché minimo progetto federale di smantellamento; sono quindi considerate dai rispettivi esercenti come “in pausa”, in attesa che siano non solo ben definiti i termini del decommissioning ma anche quelli delle battaglie legali a contorno della (triste) vicenda.

Fonte principale: http://www.world-nuclear.org/information-library/country-profiles/countries-g-n/germany.aspx

A proposito di battaglie legali: http://planetsave.com/2016/10/12/swedish-utility-vattenfall-sues-germany-closure-brunsbuttel-krummel-nuclear-power-plants/

[2]       Grafenrheinfeld, PWR Siemens, 1275 MW(e) di capacità netta, della E.ON, in shutdown permanente da giugno 2015.

[3]       FER sta per Fonti di Energia Rinnovabile. Tra le “non-FER” viene annoverato anche il nucleare, sebbene sia arcinoto (ma non ci stancheremo mai di ricordarlo) che sia anch’essa una fonte di energia elettrica low carbon, ovvero è tra quelle che, tenuto conto dell’intero ciclo di vita di un impianto (LCA, Life Cycle Assessment), immettono in atmosfera – a parità di energia elettrica prodotta – un quantitativo di gas climalteranti inferiore per due ordini di grandezza rispetto alla lignite e al carbone. In particolare, le mediane degli studi analizzati attribuisce alle centrali nucleari un valore di emissioni di CO2 equivalente di poco superiori all’eolico e all’idroelettrico, e circa un terzo inferiore al solare fotovoltaico.
Fonti:
IPCC  WG III – Special Report on Renewable Energy Sources and Climate Change Mitigation, 2011, http://srren.ipcc-wg3.de/report/IPCC_SRREN_Full_Report.pdf

WNA Report – Comparison of Lifecycle Greenhose Gas Emissions of Various Electricity Generation Sources, 2011, http://www.world-nuclear.org/our-association/publications/online-reports/lifecycle-ghg-emissions-of-electricity-generation.aspx
[4]       Per questo nostro pezzo, ove non diversamente specificato, la fonte dei dati è “Electricity Prices in Free Fall“ di Jürgen Flauger e Franz Hubik, articolo apparso sul Handelsblatt il 23 marzo 2016.

Per avere un’idea della gravità della situazione abbiamo fatto due conti. La potenza di generazione netta delle centrali termoelettriche convenzionali e nucleari in Germania nel 2016 ammonta a circa 89 GW; per cui un obiettivo minimo di 521 TWh/anno significa mantenere un fattore di carico medio pari a circa il 67%; una previsione di 435 TWh/anno significa invece che il valore medio atteso del fattore di carico è molto più basso, ossia circa il 56%. In altre parole, se quest’ultima previsione per il 2016 dovesse essere confermata dalla produzione effettiva delle centrali, facendo un paragone con un impiegato medio che lavora circa 2000 ore all’anno, potremmo dire che sono state 5 mesi in ferie “forzate”.

[5]       Per approfondire consigliamo i grafici interattivi del Fraunhofer-Institut für Solare Energiesysteme (Fraunhofer ISE), che visualizzano nel dettaglio lo storico delle importazioni ed esportazioni di elettricità in Germania.

[6]       Il “parco nucleare” tedesco pur dimezzato continua a fornire un buon 16% dell’energia elettrica (87,07 TWh su un totale di 559,22 TWh, nel 2015), ovvero circa l’8% dell’energia primaria. Fonte: Fraunhofer ISE, 2016 e BMWi, 2015

[7]       Quantomeno non se ne parla prima del 2040, come ha dichiarato recentemente il Ministro dell’Economia, Sigmar Gabriel.

[8]       Matthias von Bechtolsheim e Michael Kruse, “The future of lignite power  – A viewpoint on the Energiewende and its impact on lignite power“, Arthur D. Little, 2015

[9]       A proposito, apprendiamo dalla divisione Platts della Standard & Poors che le esportazioni di Gazprom verso la Germania hanno registrato un +28% nel periodo 9/2015 – 9/2016.

[10]     Esistono numerosi studi che analizzano i dati, raccolti nelle cave di lignite e nelle centrali termoelettriche che usano questo combustibile naturalmente radioattivo, al fine di monitorare l’esposizione dei lavoratori e delle popolazioni residenti nelle zone limitrofe. La concentrazione dei radionuclidi, tipicamente isotopi del Radio, Torio e Potassio, varia a seconda dei casi ed è maggiore nelle ceneri sottoprodotto della combustione.

La pericolosità di questo tipo di contaminazione dell’ambiente è un argomento “da trattare con i guanti”, e che non è possibile esaurire in poche righe. Per il momento ci limitiamo a proporre una selezione di studi da consultare per chi volesse eventualmente farsi un’idea. Con una raccomandazione. Per un utile confronto, consultate queste fonti tenendo a portata di mano i valori della contaminazione radioattiva risultante dall’incidente di Fukushima:

Mara Hvistendahl, “Coal ash is more radioactive than nuclear waste”, Scientific American, Dec. 13, 2007

Hasani et al. “Naturally occurring radioactive materials (NORMs) generated from lignite-fired power plants in Kosovo”, Journal of Environmental Radioactivity 138 (2014) 156-161

N.R. Greiner, P. Wagner, “Natural radioactivity in lignites and lignite ash: Final report”, Los Alamos National Lab., NM (USA), 1987

Füsun Çam et al. “The natural radioactivity contents in feed coals from the lignite-fired power plants in Western Anatolia, Turkey”, Radiation Protection Dosimetry (2010), Vol. 142, No. 2–4, pp 300-307, doi:10.1093/rpd/ncq210

Saracevic et al. “The natural radioactivity in vicinity of the brown coal mine Tusnica – Livno, BiH”, Radioprotection, Volume 44, Number 5 (2009), http://dx.doi.org/10.1051/radiopro/20095062